
9, 4, 2025



Computational Mathematics and Information Technologies

Peer-reviewed scientific and theoretical journal
 

eISSN 2587‒8999
Published since 2017

Periodicity — 4 issues per year
DOI: 10.23947/2587‒8999

Founder and Publisher — Don State Technical University (DSTU), Rostov-on-Don, Russian Federation

The journal “Computational Mathematics and Information Technologies” publishes reviews, original articles and short 
reports related to mathematical modelling, numerical methods and information technologies for solving complex and 
topical problems of science and modern modern engineering and technology. Research areas include continuum mechanics, 
fluid dynamics, Earth sciences, chemistry, biology, image processing and pattern recognition, parallel computing theory 
and its applications, big data and artificial intelligence technologies, etc.

The journal “Computational Mathematics and Information Technologies” accepts scientific and review articles for 
publication in accordance with the sections:

1. Computational Mathematics
2. Mathematical Modelling 
3. Information Technologies 

Registration: Mass media registration certificate ЭЛ № ФС 77‒66529 dated July 21, 2016 issued 
by the Federal Service for Supervision of Communications, Information 
Technology and Mass Media

Indexing and Archiving: RISC, Crossref, Cyberleninka

Website: https://cmit-journal.ru

Address
of the Editorial Office:

1, Gagarin sq., Rostov-on-Don, 344003, Russian Federation

E-mail: CMIT-EJ@yandex.ru

Telephone: +7 (863) 273‒85‒14

Date of publication
No. 4, 2025:

30.12.2025

 Don State Technical University, 2025

https://cmit-journal.ru
mailto:CMIT-EJ%40yandex.ru?subject=
https://creativecommons.org/licenses/by/4.0/


Computational Mathematics and Information Technologies

Рецензируемый научно-теоретический журнал 

eISSN 2587‒8999
Издается с 2017 года

Периодичность — 4 выпуска в год
DOI: 10.23947/2587‒8999

Учредитель и издатель — Федеральное государственное бюджетное образовательное учреждение 
высшего образования «Донской государственный технический университет» (ДГТУ), г. Ростов-на-Дону, 
Российская Федерация

Журнал «Computational Mathematics and Information Technologies» публикует обзоры, оригинальные статьи и 
краткие сообщения, посвященные математическому моделированию, численным методам и информационным 
технологиям для решения сложных и актуальных проблем науки и современной технологии. Область применения 
исследований — это механика сплошных сред, гидроаэродинамика, науки о Земле, химия, биология, обработка 
изображений и распознавание образов, теория параллельных вычислений и ее приложения, технологии больших 
баз данных и искусственного интеллекта и т. д. 
Журнал «Computational Mathematics and Information Technologies» принимает к публикации научные и 
обзорные статьи в соответствии с разделами:

1. Вычислительная математика 
2. Математическое моделирование 
3. Информационные технологии

Регистрация:
Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 – 66529  
от 21 июля 2016 г., выдано Федеральной службой по надзору в сфере связи, информационных 
технологий и массовых коммуникаций

Индексация и архивация: РИНЦ, CrossRef, CyberLeninka

Сайт: https://cmit-journal.ru

Адрес редакции: 344003, Российская Федерация, г. Ростов-на-Дону, пл. Гагарина, 1

E-mail: CMIT-EJ@yandex.ru

Телефон: +7 (863) 273‒85‒14

Дата выхода 
№ 4, 2025 в свет:

30.12.2025

 Донской государственный технический университет, 2025

https://cmit-journal.ru
mailto:CMIT-EJ%40yandex.ru?subject=
https://creativecommons.org/licenses/by/4.0/


Computational Mathematics and Information Technologies. 2025;9(4). eISSN 2587‒8999

Editorial Board
Editor-in-Chief, Alexander I. Sukhinov, Corresponding member of RAS, Dr.Sci. (Phys. & Math.), Professor, Don State 
Technical University (Rostov-on-Don, Russian Federation), ScopusID, ResearcherID, MathSciNet, SPIN-code, ORCID, 
sukhinov@gmail.com, spu-40.4@donstu.ru
Deputy Editor-in-Chief, Mikhail V. Yakobovski, Corresponding Member of RAS, Dr.Sci. (Phys. & Math.), Professor, Keldysh 
Institute of Applied Mathematics, Russian Academy of Sciences (Moscow, Russian Federation), ScopusID, SPIN-code, ORCID
Executive Secretary, Alexander P. Petrov  Dr.Sci. (Phys. & Math.), Leading Research Fellow, Institute of Control Sciences RAS 
(Moscow, Russian Federation), ScopusID, ResearcherID, SPIN-code, ORCID, Istina   

Elena V. Aleksenko, Cand.Sci. (Phys. & Math.), Ph.D., Professor, University of Littoral Opal Coast (Boulogne-sur-Mer, France), 
ScopusID, ResearcherID, ORCID
Vladimir V. Voevodin, Corresponding Member of RAS, Dr.Sci. (Phys. & Math.), Professor, Lomonosov Moscow State 
University (Moscow, Russian Federation), ScopusID, ResearcherID, ORCID
Vladimir A. Gasilov, Dr.Sci. (Phys. & Math.), Professor, Keldysh Institute of Applied Mathematics, Russian Academy 
of Sciences (Moscow, Russian Federation), ScopusID, ResearcherID, SPIN-code, ORCID
Valentin A. Gushchin, Corresponding Member of RAS, Dr.Sci. (Phys. & Math.), Professor, Institute of Computer Aided 
Design, Russian Academy of Sciences (Moscow, Russian Federation), ScopusID, SPIN-code, ORCID
Oleg Yu. Zikanov, Cand.Sci. (Phys. & Math.), Professor, Head of Department, University of Michigan-Dearborn 
(Dearborn, United States of America), ORCID, SPIN-code
Galina G. Lazareva, Corresponding member of RAS, Dr. Sci. (Phys. & Math), Professor of RAS, RUDN University, 
(Moscow, Russian Federation), ScopusID, SPIN-code, ORCID
Igor B. Petrov, Corresponding Member of RAS, Dr.Sci. (Phys. & Math.), Professor, Moscow Institute of Physics and 
Technology (State University) (Moscow, Russian Federation), ScopusID, SPIN-code
Sergey V. Polyakov, Dr.Sci. (Phys. & Math.), Professor, Keldysh Institute of Applied Mathematics, Russian Academy of 
Sciences (Moscow, Russian Federation), ScopusID, SPIN-code, ORCID
Alexey L. Semenov, Dr.Sci. (Phys.-Math.), Professor, Academician of the Russian Academy of Sciences, Academician 
of the Russian Academy of Education, Lomonosov Moscow State University (Moscow, Russian Federation), ScopusID, 
ResearcherID, SPIN-code, ORCID 
Vladimir F. Tishkin, Corresponding Member of RAS, Dr.Sci. (Phys. & Math.), Professor, Keldysh Institute of Applied 
Mathematics, Russian Academy of Sciences (Moscow, Russian Federation), ScopusID, ResearcherID, SPIN-code
Boris N. Chetverushkin, Academician of RAS, Dr.Sci. (Phys. & Math.), Professor, Keldysh Institute of Applied 
Mathematics, Russian Academy of Sciences (Moscow, Russian Federation), ScopusID, ResearcherID, SPIN-code, ORCID
Konstantin A. Chekhonin, Dr.Sci. (Phys. & Math.), Associate Professor, Deputy Director of the Institute for Applied 
Mathematics, Director of the Khabarovsk Branch of the Institute for Applied Mathematics, Far Eastern Branch of the 
Russian Academy of Sciences (Khabarovsk, Russian Federation), ScopusID, ResearcherID, SPIN-code, ORCID 
Alexander E. Chistyakov, Dr.Sci. (Phys. & Math.), Professor, Don State Technical University (Rostov-on-Don, Russian 
Federation), ScopusID, ResearcherID, SPIN-code, ORCID
Maxim V. Shamolin, Dr.Sci. (Phys. & Math.), Professor, Corresponding Member of the Russian Academy of Sciences, 
Lomonosov Moscow State University (Moscow, Russian Federation), ScopusID, ResearcherID, SPIN-code, ORCID
Alexander A. Shananin, Academician of RAS, Dr.Sci. (Phys. & Math.), Professor, Moscow Institute of Physics and 
Technology (State University) (Moscow, Russian Federation), ScopusID, ResearcherID, SPIN-code, ORCID
Yalchin Efendiev, PhD, Professor of Mathematics, Texas A&M University (College Station, United States of America), 
ORCID, ScopusID, ResearcherID

https://www.scopus.com/authid/detail.url?authorId=8573972700
https://www.webofscience.com/wos/author/rid/I-1091-2016
https://mathscinet.ams.org/mathscinet/MRAuthorID/216938
https://elibrary.ru/author_items.asp?authorid=143825
https://orcid.org/0000-0002-5875-1523
mailto:sukhinov%40gmail.com?subject=
mailto:spu-40.4%40donstu.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57063571100
https://elibrary.ru/author_items.asp?authorid=10790
https://orcid.org/0000-0002-9498-1457
https://www.scopus.com/authid/detail.url?authorId=57192177702
https://www.webofscience.com/wos/author/rid/R-6729-2016
https://elibrary.ru/author_items.asp?authorid=15671
https://orcid.org/0000-0001-5244-8286
https://istina.msu.ru/workers/2082576
https://www.scopus.com/authid/detail.uri?authorId=55636165200
https://www.webofscience.com/wos/author/record/E-2685-2016
https://orcid.org/0000-0001-6208-0999
https://www.scopus.com/authid/detail.uri?authorId=7005332282
https://www.webofscience.com/wos/author/record/K-8146-2017
https://orcid.org/0000-0001-6036-5106
https://www.scopus.com/authid/detail.uri?authorId=57222545377
https://www.webofscience.com/wos/author/record/B-6122-2018
https://elibrary.ru/author_profile.asp?authorid=4235
https://orcid.org/0000-0001-7574-4061
https://www.scopus.com/authid/detail.uri?authorId=7005270482
https://elibrary.ru/author_profile.asp?authorid=3335
https://orcid.org/0000-0003-0297-2279
https://orcid.org/0000-0003-3844-1779
https://elibrary.ru/author_items.asp?authorid=4500
https://www.scopus.com/authid/detail.uri?authorId=6701469365
https://elibrary.ru/author_profile.asp?authorid=182059
https://orcid.org/0000-0001-9834-3615
https://www.scopus.com/authid/detail.uri?authorId=57200663364
https://elibrary.ru/author_profile.asp?authorid=9347
https://www.scopus.com/authid/detail.uri?authorId=55829290400
https://elibrary.ru/author_profile.asp?authorid=6885
https://orcid.org/0000-0003-1859-9034
https://www.scopus.com/authid/detail.uri?authorId=7402499019
https://www.webofscience.com/wos/author/record/S-5268-2018
https://elibrary.ru/author_profile.asp?id=113589
https://orcid.org/0000-0002-1785-2387
https://www.scopus.com/authid/detail.uri?authorId=7004212204
https://www.webofscience.com/wos/author/record/603750
https://elibrary.ru/author_profile.asp?authorid=110
https://www.scopus.com/authid/detail.uri?authorId=6701664800
https://www.webofscience.com/wos/author/record/1425336
https://elibrary.ru/author_profile.asp?authorid=14
https://orcid.org/0000-0003-1216-5438
https://www.scopus.com/authid/detail.uri?authorId=6507775351
https://www.webofscience.com/wos/author/record/58083012
https://elibrary.ru/author_profile.asp?authorid=171386
https://orcid.org/0000-0001-5379-4930
https://www.scopus.com/authid/detail.uri?authorId=57203921718
https://www.webofscience.com/wos/author/record/355327
https://elibrary.ru/author_profile.asp?authorid=474527
https://orcid.org/0000-0002-8323-6005
https://www.scopus.com/authid/detail.uri?authorId=6603897789
https://www.webofscience.com/wos/author/record/O-1170-2013
https://elibrary.ru/author_profile.asp?id=16091
https://orcid.org/0000-0002-9534-0213
https://www.scopus.com/authid/detail.uri?authorId=56026418600
https://www.webofscience.com/wos/author/record/X-9679-2018
https://www.elibrary.ru/author_profile.asp?id=3930
https://orcid.org/0000-0001-8510-069X
https://orcid.org/0000-0001-9626-303X
https://www.scopus.com/authid/detail.uri?authorId=12039192600
https://www.webofscience.com/wos/author/record/F-2777-2015


Computational Mathematics and Information Technologies. 2025;9(4). eISSN 2587‒8999

Редакционная коллегия
Главный редактор, Сухинов Александр Иванович, член-корреспондент РАН, доктор физико-математических 
наук, профессор, Донской государственный технический университет (Ростов-на-Дону, Российская Федерация), 
ScopusID, ResearcherID, MathSciNet, SPIN-код, ORCID, sukhinov@gmail.com, spu-40.4@donstu.ru
Заместитель главного редактора, Якобовский Михаил Владимирович, член-корреспондент РАН, доктор 
физико-математических наук, профессор, Институт прикладной математики им. М.В. Келдыша РАН 
(Москва, Российская Федерация), ScopusID, SPIN-код, ORCID
Ответственный секретарь, Петров Александр Пхоун Чжо, доктор физико-математических наук, главный 
научный сотрудник, Институт проблем управления им. В.А. Трапезникова РАН (Москва, Российская Федерация), 
ScopusID, ResearcherID, SPIN-код, ORCID, ИСТИНА  

Алексеенко Елена В., кандидат физико-математических наук, PhD, профессор, Университет Литораль Кот д’Опаль, 
(Булонь-сюр-Мер, Франция), ScopusID, ResearcherID, ORCID
Воеводин Владимир Валентинович, член-корреспондент РАН, доктор физико-математических наук, профессор, 
Московский государственный университет им. М.В. Ломоносова (Москва, Российская Федерация), ScopusID, 
ResearcherID, SPIN-код, ORCID
Гасилов Владимир Анатольевич, доктор физико-математических наук, профессор, Институт прикладной 
математики им. М.В. Келдыша РАН (Москва, Российская Федерация), ScopusID, ResearcherID, SPIN-код, ORCID
Гущин Валентин Анатольевич, член-корреспондент РАН, доктор физико-математических наук, профессор, 
Институт автоматизации проектирования РАН (Москва, Российская Федерация), ScopusID, SPIN-код, ORCID
Зиканов Олег Юрьевич, кандидат физико-математических наук, профессор, заведующий кафедрой, Университет 
штата Мичиган-Дирборн (Дирборн, Соединенные Штаты Америки), ORCID, SPIN-код
Лазарева Галина Геннадьевна, член-корреспондент РАН, доктор физико-математических наук, профессор РАН, 
Российский университет дружбы народов (Москва, Российская Федерация), ScopusID, SPIN-код, ORCID
Петров Игорь Борисович, член-корреспондент РАН, доктор физико-математических наук, профессор, Московский 
физико-технический институт (государственный университет) (Москва, Российская Федерация), ScopusID, SPIN-код
Поляков Сергей Владимирович, доктор физико-математических наук, старший научный сотрудник, Институт 
прикладной математики им. М.В. Келдыша РАН (Москва, Российская Федерация), ScopusID, SPIN-код, ORCID
Семенов Алексей Львович, доктор физико-математических наук, профессор, академик РАН, академик РАО, 
Московский государственный университет им. М.В. Ломоносова (Москва, Российская Федерация), ScopusID, 
ResearcherID, SPIN-код, ORCID 
Тишкин Владимир Федорович, член-корреспондент РАН, доктор физико-математических наук, профессор, 
Институт прикладной математики им. М.В. Келдыша РАН (Москва, Российская Федерация), ScopusID, 
ResearcherID, SPIN-код
Четверушкин Борис Николаевич, академик РАН, доктор физико-математических наук, профессор, научный 
руководитель Института прикладной математики им. М.В. Келдыша РАН (Москва, Российская Федерация), 
ScopusID, ResearcherID, SPIN-код, ORCID
Чехонин Константин Александрович, доктор физико-математических наук, доцент, зам. директора 
Института прикладной математики ДВО РАН, руководитель  (директор) Хабаровского отделения ИПМ ДВО РАН 
(Хабаровск, Российская Федерация), ScopusID, ResearcherID, SPIN-код, ORCID
Чистяков Александр Евгеньевич, доктор физико-математических наук, профессор, Донской государственный 
технический университет (Ростов-на-Дону, Российская Федерация), ScopusID, ResearcherID, SPIN-код, ORCID
Шамолин Максим Владимирович, доктор физико-математических наук, профессор, член-корреспондент РАН, 
Московский государственный университет им. М.В. Ломоносова (Москва, Российская Федерация), ScopusID, 
ResearcherID, SPIN-код, ORCID
Шананин Александр Алексеевич, академик РАН, доктор физико-математических наук, профессор, Московский 
физико-технический институт (государственный университет) (Москва, Российская Федерация), ScopusID, 
ResearcherID, SPIN-код, ORCID
Эфендиев Ялчин, PhD, профессор, Техасский университет A&M (Колледж-Стейшен, Соединенные Штаты Америки), 
ORCID, ScopusID, ResearcherID

https://www.scopus.com/authid/detail.url?authorId=8573972700
https://www.webofscience.com/wos/author/rid/I-1091-2016
https://mathscinet.ams.org/mathscinet/MRAuthorID/216938
https://elibrary.ru/author_items.asp?authorid=143825
https://orcid.org/0000-0002-5875-1523
mailto:sukhinov%40gmail.com?subject=
mailto:spu-40.4%40donstu.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57063571100
https://elibrary.ru/author_items.asp?authorid=10790
https://orcid.org/0000-0002-9498-1457
https://www.scopus.com/authid/detail.url?authorId=57192177702
https://www.webofscience.com/wos/author/rid/R-6729-2016
https://elibrary.ru/author_items.asp?authorid=15671
https://orcid.org/0000-0001-5244-8286
https://istina.msu.ru/workers/2082576
https://www.scopus.com/authid/detail.uri?authorId=55636165200
https://www.webofscience.com/wos/author/record/E-2685-2016
https://orcid.org/0000-0001-6208-0999
https://www.scopus.com/authid/detail.uri?authorId=7005332282
https://www.webofscience.com/wos/author/record/K-8146-2017
https://elibrary.ru/author_profile.asp?authorid=128
https://orcid.org/0000-0001-6036-5106
https://www.scopus.com/authid/detail.uri?authorId=57222545377
https://www.webofscience.com/wos/author/record/B-6122-2018
https://elibrary.ru/author_profile.asp?authorid=4235
https://orcid.org/0000-0001-7574-4061
https://www.scopus.com/authid/detail.uri?authorId=7005270482
https://elibrary.ru/author_profile.asp?authorid=3335
https://orcid.org/0000-0003-0297-2279
https://orcid.org/0000-0003-3844-1779
https://elibrary.ru/author_items.asp?authorid=4500
https://www.scopus.com/authid/detail.uri?authorId=6701469365
https://elibrary.ru/author_profile.asp?authorid=182059
https://orcid.org/0000-0001-9834-3615
https://www.scopus.com/authid/detail.uri?authorId=57200663364
https://elibrary.ru/author_profile.asp?authorid=9347
https://www.scopus.com/authid/detail.uri?authorId=55829290400
https://elibrary.ru/author_profile.asp?authorid=6885
https://orcid.org/0000-0003-1859-9034
https://www.scopus.com/authid/detail.uri?authorId=7402499019
https://www.webofscience.com/wos/author/record/S-5268-2018
https://elibrary.ru/author_profile.asp?id=113589
https://orcid.org/0000-0002-1785-2387
https://www.scopus.com/authid/detail.uri?authorId=7004212204
https://www.webofscience.com/wos/author/record/603750
https://elibrary.ru/author_profile.asp?authorid=110
https://www.scopus.com/authid/detail.uri?authorId=6701664800
https://www.webofscience.com/wos/author/record/1425336
https://elibrary.ru/author_profile.asp?authorid=14
https://orcid.org/0000-0003-1216-5438
https://www.scopus.com/authid/detail.uri?authorId=6507775351
https://www.webofscience.com/wos/author/record/58083012
https://elibrary.ru/author_profile.asp?authorid=171386
https://orcid.org/0000-0001-5379-4930
https://www.scopus.com/authid/detail.uri?authorId=57203921718
https://www.webofscience.com/wos/author/record/355327
https://elibrary.ru/author_profile.asp?authorid=474527
https://orcid.org/0000-0002-8323-6005
https://www.scopus.com/authid/detail.uri?authorId=6603897789
https://www.webofscience.com/wos/author/record/O-1170-2013
https://elibrary.ru/author_profile.asp?id=16091
https://orcid.org/0000-0002-9534-0213
https://www.scopus.com/authid/detail.uri?authorId=56026418600
https://www.webofscience.com/wos/author/record/X-9679-2018
https://www.elibrary.ru/author_profile.asp?id=3930
https://orcid.org/0000-0001-8510-069X
https://orcid.org/0000-0001-9626-303X
https://www.scopus.com/authid/detail.uri?authorId=12039192600
https://www.webofscience.com/wos/author/record/F-2777-2015


5

Computational Mathematics and Information Technologies. 2025;9(4):5. eISSN 2587‒8999

Соntents

Congratulations to Academician of the Russian Academy of Sciences and 
Academician of the Russian Academy of Education Alexey Lvovich Semenov ..... 7

Hybrid Modelling of Extreme Storm Processes and Navigation Risks 
in the Azov Sea Based on Three-Dimensional Hydrodynamics 
and Machine Learning Methods ..................................................................................
A.I. Sukhinov, S.V. Protsenko, E.A. Protsenko, N.D. Panasenko

10

Unsteady Model of Blood Coagulation in Aneurysms of Blood Vessels ...................
N.K. Volosova, K.A. Volosov, А.K. Volosova, Mikhail I. Karlov, 
D.F. Pastukhov, Yu.F. Pastukhov 

22

Mathematical Modelling of Suspension Uplift by Wind Gusts .................................
V.V. Sidoryakina, A.E. Chistyakov

38

Mathematical Modelling of the Bioproductivity of a Shallow Water Body 
under Sudden Depression Caused by Scyphozoan Jellyfish ......................................
D.V. Bondarenko, A.V. Nikitina

46

Mathematical Modelling of Green Microalgae Invasion and Rehabilitation 
of the Taganrog Bay: Ecological-Hygienic and Medical Consequences ...................
Yu.V. Belova, O.V. Kolgunova, M.I. Gabueva

56

MATHEMATICAL MODELLING

INFORMATION TECHNOLOGIES



6

Computational Mathematics and Information Technologies. 2025;9(4):6. eISSN 2587‒8999

Содержание

Поздравление с юбилеем академика РАН и академика РАО А.Л. Семенова ... 7

Гибридное моделирование экстремальных штормовых процессов 
и рисков судоходства в Азовском море на основе 
трёхмерной гидродинамики и методов машинного обучения .............................
А.И. Сухинов, С.В. Проценко, Е.А. Проценко Н.Д. Панасенко

10

Нестационарная модель свертывания крови в аневризмах 
кровеносных сосудов ..................................................................................................
Н.К. Волосова, К.А. Волосов, А.К. Волосова, М.И. Карлов, Д.Ф. Пастухов, 
Ю.Ф. Пастухов

22

Математическое моделирование подъема взвеси ветровыми порывами .........
В.В. Сидорякина, А.Е. Чистяков

38

Математическое моделирование биопродуктивности 
мелководного водоема при внезапной депрессии 
сцифоидными медузами .............................................................................................
Д.В. Бондаренко, А.В. Никитина

46

Математическое моделирование инвазии зеленых микроводорослей 
и оздоровления Таганрогского залива: 
эколого-гигиенические и медицинские последствия ...........................................
Ю.В. Белова, О.В. Колгунова, М.И. Габуева

56

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ



Computational Mathematics and Information Technologies. 2025;9(4):7−9. еISSN 2587-8999

7

On the Anniversary of Academician of the Russian Academy of Sciences and Academician 
of the Russian Academy of Education, Doctor of Physical and Mathematical Sciences, Professor

ALEXEY LVOVICH SEMENOV

The Editorial Board of the journal “Computational Mathematics and Information Technologies” extends its heartfelt 
congratulations to its esteemed member, Alexey Lvovich Semenov, on the occasion of his 75th anniversary!

Alexey Lvovich Semenov is the Head of the Department of Mathematical Logic and Algorithm Theory at the Faculty 
of Mechanics and Mathematics, Advisor to the Rector of the Federal State Budgetary Educational Institution of Higher 
Education “Lomonosov Moscow State University”, Director of the A.I. Berg Institute of Cybernetics and Educational 
Informatics at the Federal State Institution “Federal Research Center for Computer Science and Control” of the Russian 
Academy of Sciences, Academician of the Russian Academy of Sciences, Academician of the Russian Academy of 
Education, Professor, and Doctor of Physical and Mathematical Sciences.

A.L. Semenov is an outstanding mathematician, a specialist in the fields of mathematical logic, complexity theory, and 
computer science. He works in the areas of artificial intelligence and the development of applied software for domestic 
supercomputers.

Key Milestones in the Scientific, Pedagogical, and Organizational Activities of the Jubilarian
In 1972, A.L. Semenov graduated with honors from the Faculty of Mechanics and Mathematics at Lomonosov 

Moscow State University, specializing in “Mathematics”. In 1975, he completed his postgraduate studies at the same 
faculty, defending his Candidate of Sciences dissertation titled “On Definability in Some Decidable Theories”. In 1985, 
he defended his Doctor of Sciences dissertation, “Logical Theories of Unary Functions on Natural Numbers”.

From 1975 to 1983, he served as a Lecturer at the Department of Mathematical Logic at Lomonosov Moscow State 
University. His career then continued with leadership roles, including Head of the Sector for Problem-Oriented Processors 
and Head of the Laboratory for Algorithm Theory and Linguistic Support within the Scientific Council of the USSR 
Academy of Sciences for the Complex Problem “Cybernetics” at the Institute of Cybernetics Problems of the USSR 
Academy of Sciences and the A.A. Dorodnitsyn Computing Center of the Russian Academy of Sciences.

From 1993 to 2013, he served as Rector of the Moscow Institute of Open Education (known until 2002 as the Moscow 
Institute for the Professional Development of Educators). He later served as Rector of Moscow Pedagogical State 
University (V.I. Lenin MPGU) from 2013 to 2016.

Since 2015, he has been the Director of the A.I. Berg Institute of Cybernetics and Educational Informatics at the 
Federal Research Center for Computer Science and Control of the Russian Academy of Sciences.

A.L. Semenov was elected a Corresponding Member of the Russian Academy of Sciences in 2008 and became a Full 
Member (Academician) of the Russian Academy of Sciences in 2011, within the Division of Mathematical Sciences. He 
was elected an Academician of the Russian Academy of Education in 2010. He has held the academic title of Professor 
since 1998.

Main Scientific Contributions of A.L. Semenov
Alexey Lvovich Semenov’s contributions to mathematics and theoretical computer science encompass results in 

formal grammars, program schemata and dynamic logics, relational algebras, automaton-realizable relations, and decision 
algorithms for a range of mathematical theories. He developed a theory of algorithmic randomness for finite sequences, 
parallel to Kolmogorov’s combinatorial complexity theory, and solved the Kolmogorov problem concerning the precise 
estimation of randomness test complexity. The central theme of his mathematical research has been definability theory, 
where he is a world-renowned authority.

Research on definability originates from the classical works of the Italian (G. Peano, A. Padoa, M. Pieri) and Polish 
(A. Tarski) schools of mathematical logic in the 19th and first half of the 20th centuries, as well as the works of K. Gödel. 
L. Svenonius՚s key 1959 paper laid the foundation for the “Erlangen program” — the completeness theorem for definability. 
A.L. Semenov and S.F. Soprunov obtained a combinatorial version of the Svenonius theorem.

The decidability of the definability space for the addition of natural numbers is a classical 1929 result by Presburger. 
In 1979, A.L. Semenov proved the decidability of a broad class of extensions of this space by unary functions, such as 
exponentiation or factorial. In the case of monadic spaces, A.L. Semenov obtained results on extending the definability 
space for the successor of natural (or integer) numbers with almost periodic (recurrent) sequences from symbolic dynamics. 

ANNIVERSARY OF THE SCIENTIST
ЮБИЛЕЙ УЧЕНОГО
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This, in particular, solved the Zyfkes problem and provided a solution to Church’s uniformization problem for the almost 
periodic case. The study of almost periodic sequences was further developed in the works of his students — A.A. Muchnik, 
Yu.L. Pritykin, and M.A. Ushakov. For monadic spaces, A.A. Muchnik solved a problem concerning the monadic space 
of several successors, posed by M.O. Rabin at the International Congress of Mathematicians in Nice. S.F. Soprunov 
solved the problem posed by M.O. Rabin and C. Elgot on the existence of maximal decidable definability spaces for the 
weak monadic case.

The general subject of definability spaces gave rise to a number of questions related to the lattice of such spaces. These 
questions were answered in the works of A.L. Semenov and his colleagues. In particular, examples of spaces of arbitrary 
width were constructed. A.L. Semenov and S.F. Soprunov constructed examples of definability spaces of arbitrary finite 
quantifier depth.

In 1980, A.N. Kolmogorov, who headed the Department of Mathematical Logic and Algorithm Theory at Moscow 
State University (the department currently chaired by A.L. Semenov), invited A.L. Semenov to co-lead a seminar on 
complexity, which continues to operate to this day. This defined another major direction of A.L. Semenov›s work. In 
his seminal 1963 publication on the complexity of finite objects, A.N. Kolmogorov raised the question of the precise 
relationship between the complexity of a sequence, the complexity of an algorithm selecting a subsequence from it, and the 
degree to which the selected subsequence satisfies the law of large numbers. Kolmogorov revisited this problem in 1983. 
The solution to this problem by A.A. Muchnik and A.L. Semenov in 2003 was awarded the A.N. Kolmogorov Prize of 
the Russian Academy of Sciences as an outstanding contribution to mathematics. He is also the author of numerous works 
in general theory of algorithms and computations, algorithmic randomness, program logics, combinatorial group theory, 
computational complexity, algorithmic degrees, and effective computational algorithms.

His activity in applied computer science and the creation of artificial intelligence systems began in 1964 with 
participation in works on speech recognition, text generation systems, situational control, and compilers for Lisp and 
APL languages for domestic computers. Starting from 1983, A.L. Semenov participated in the development of applied 
mathematical software for the “Elektronika SSBIS” supercomputer.

A.L. Semenov is the author of the concept of the “extended personality” as a methodological foundation for AI 
applications in education. The “MSU Ark of Knowledge” project, implemented under his leadership, serves as the basis 
for building an ontology of fundamental knowledge and trusted encyclopedic systems.

A.L. Semenov participated in the creation of the “Digital Economy of the Russian Federation” program and the 
national strategy in the field of artificial intelligence. He is a prominent figure in Russian education and a key participant in 
shaping the modern content of school informatics and teacher training. His areas of interest include fundamental problems 
of general and pedagogical education, digital technologies in education, digital transformation of education, issues of 
updating the content of education in primary and secondary schools, as well as professional pedagogical education.

Beginning in 1967, A.L. Semenov taught at Moscow School No. 7, which he himself had graduated from, and later 
worked within A.N. Kolmogorov’s team at the Physics and Mathematics Boarding School affiliated with Moscow State 
University. In 2003, he re-established School No. 179 as part of the Moscow Institute of Open Education (MIOO), which 
he headed, and brought back to work there Nikolai Nikolaevich Konstantinov, the founder and ideological leader of 
the tradition of specialized mathematics schools in Russia. He served as a member of the Executive Committee of the 
International Commission on Mathematical Instruction.

In 1984, he became the organizer and a member of the authoring team for the first informatics textbook in the USSR, 
published in a print run of 3 million copies for all schools across the Soviet Union.

From the mid-1980s, A.L. Semenov led developments aimed at forming a new methodology for Russian education, 
encompassing research activities for all students and the use of digital technologies. He developed the conceptual 
foundation and practical solutions (including textbooks, software, subject-specific environments, standards, and 
organizational documents) for learning, teaching, and management processes utilizing digital tools. He began this work 
under the guidance of E.P. Velikhov and A.P. Ershov within the framework of the All-Union Scientific and Technical 
Commission “Shkola-1” of the USSR Academy of Sciences and continued it at the Institute of New Technologies, 
which he founded. The methodology he created influenced the subsequent development of Russian and global education, 
forming the basis for UNESCO recommendations for all levels of general and teacher education.

A.L. Semenov is widely known as the founder of the Institute of New Technologies in Education (INT), which 
developed and adapted numerous digital educational resources for Russia, published hundreds of books for teachers on 
the use of ICT across all school subjects, and is recognized as a world leader in applying information technology in schools 
based on a constructionist approach. He led the authoring team for an integrated course in mathematics, informatics, and 
linguistics for primary school. Courses based on this work, “Informatics” and “Algorithmics”, are now widely used in 
Russian schools. Under his guidance, a range of computer environments and tools for student activities were developed, 
aligned with modern educational goals across all subjects.

A program for regional informatization developed under A.L. Semenov›s leadership received the President of the 
Russian Federation Prize in 1999. He is one of the leaders of joint projects involving the Russian Academy of Sciences, 
Moscow State University, and the educational community aimed at improving the quality of digital educational resources 
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and shaping standards. He was one of the developers of educational standards for schools: for Moscow in 1996, and 
for the Russian Federation in 2004 and 2009. He served as head of the scientific-methodological council of the Federal 
Institute of Pedagogical Measurements (FIPI) for the state final certification in mathematics and currently holds this 
position for informatics. The implementation of his ideas in the field of education in Moscow has enabled the creation of a 
unique, world-class information environment for learning, development, and social interaction among students, teachers, 
and educational management systems. Work on the informatization of Russian education carried out under his leadership 
was awarded the Russian Government Prize in 2009.

He served as the coordinator for the development of the Concept for the Development of Russian Mathematics 
Education, created in response to a May 2012 Presidential Decree, and was one of the leaders in developing the Concept 
for Technological Education in Schools, following an assignment from the President of the Russian Federation.

A.L. Semenov was the only plenary speaker from Russia at the II International UNESCO Congress “Education and 
Informatics” in Moscow in 1996, a keynote speaker at the seminar “Bridging the Gap between the Information-rich and 
the Information-poor: New Technologies and the Future of Education” at the 46th International Conference on Education 
(Geneva, 2001), and the lead author of UNESCO books “Recommendations on ICT in Primary Education” (2000), 
“ICT in Schools”, and “A Teacher’s Guide, or How ICT Can Create a New, Open Learning Environment” (2005). From 
2019 to 2023, he led a Russian Foundation for Basic Research program on the implementation of digital technologies 
in schools, which involved teams from the Institute of Education as well. At his initiative, the “Charter of the School’s 
Digital Pathway” was adopted.

The holistic school model he built, based on the ideology of individual design of educational trajectories and the 
mandatory achievement of planned results by every student, is known as “result-oriented education”.

A.L. Semenov is a permanent participant in the scientific activities of the Regional Scientific Center of the Russian 
Academy of Education in the Northwestern Federal District, based at the Herzen State Pedagogical University of Russia 
and the Institute of Education at the National Research University Higher School of Economics. He has supervised the 
training of two Doctors of Sciences and four Candidates of Sciences. He is the author of over 400 scientific works in the 
fields of mathematics, computer science, and education.

Since 2021, he has served as the Editor-in-Chief of the journal Proceedings of the Russian Academy of Sciences: 
Mathematics, Computer Science, Control Processes, and from 2012 to 2018, he was the Editor-in-Chief of the journal 
Kvant (Quantum). He is a member of the editorial boards or editorial councils of journals including Informatics and Its 
Applications, Artificial Intelligence and Decision Making, Information Society, Bulletin of Cybernetics, Educational 
Issues (Voprosy obrazovaniya), Educational Studies, Educational Policy, Pedagogy, Problems of Modern Education, 
Mathematics at School, Mathematical Enlightenment, Informatics and Education, Informatics in School, Computer Tools 
in Education, and Computational Mathematics and Information Technologies.

The Editorial Board of the journal “Computational Mathematics and Information Technologies” warmly congratulates 
the esteemed jubilarian, wishing him robust health, new scientific discoveries, and joy from the fruits of his labor! May 
there be many more successful projects and grateful students ahead!
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Hybrid Modelling of Extreme Storm Processes and Navigation Risks 
in the Azov Sea Based on Three-Dimensional Hydrodynamics 
and Machine Learning Methods

Alexander I. Sukhinov1 , Sofia V. Protsenko1,2 , Elena A. Protsenko2 , Natalia D. Panasenko1

1 Don State Technical University, Rostov-on-Don, Russian Federation
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Abstract
Introduction. Extreme storms with wind speeds exceeding 30–35 m/s pose a significant threat to navigation and coastal 
infrastructure in the Azov Sea. The complex bathymetry, shallow water, and coastal geometry amplify wave and surge effects, 
causing severe destruction. The increasing frequency of extreme weather events requires next-generation forecasting systems 
capable of capturing nonlinear multiscale interactions between wind, waves, and currents.
Materials and Methods. A hybrid approach was developed, combining three-dimensional numerical hydrodynamic 
modelling based on the Navier-Stokes equations with Large-Eddy Simulation (LES) turbulence closure, ensemble 
probabilistic forecasting, and machine learning methods — including Physics-Informed Neural Networks (PINNs) and 
Fourier Neural Operators (FNOs). Atmospheric and oceanographic data from ERA5 and CMEMS reanalyses were used to 
reconstruct storm scenarios for 2010–2024. Ship-wave interactions were modeled in six degrees of freedom, while coastal 
infrastructure fragility was evaluated using probabilistic vulnerability curves. Validation was performed using Sentinel-1/3 
satellite data processed by the “LBP-neural_network” software package and Copernicus Marine Service products. 
Results. Three representative storm scenarios were simulated. The significant wave height in the central Azov Sea reached 
up to 5.2 m, with surge amplitudes up to 1.5 m. The most hazardous conditions occurred in the Kerch Strait, where current 
velocities reached 1.1 m/s. Under wind speeds of 30–35 m/s, the probability of exceeding the critical 4 m wave height 
was 42%. Resonant ship motions with roll amplitudes up to 25° were detected, indicating a high capsizing risk. Risk 
maps identified the most vulnerable zones near Taganrog, Yeysk, and Port Kavkaz. The integration of PINNs and FNOs 
accelerated ensemble simulations by a factor of 10–12 while maintaining prediction errors below 8%.
Discussion. The proposed hybrid methodology proved highly effective for modelling extreme hydrodynamic processes 
and navigation risks. The LES framework accurately reproduced wave breaking and vortex generation processes, while 
coupling with neural network surrogates combined physical consistency with computational efficiency. 
Conclusion. The approach improved forecast accuracy by 25–30% compared with conventional spectral models (SWAN, 
WAVEWATCH III). The results provide a scientific basis for developing early warning systems, assessing navigation 
safety, and planning coastal protection measures in the Azov–Black Sea region.

Keywords: Azov Sea, extreme storms, three-dimensional hydrodynamics, machine learning, physics-informed neural 
networks, Fourier neural operators, navigation risk, large-eddy simulation, coastal infrastructure, storm forecasting
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Оригинальное эмпирическое исследование

Гибридное моделирование экстремальных штормовых процессов 
и рисков судоходства в Азовском море на основе трёхмерной гидродинамики 
и методов машинного обучения
А.И. Сухинов1 , С.В. Проценко1,2 , Е.А. Проценко2 , Н.Д. Панасенко1  
1 Донской государственный технический университет, г. Ростов-на-Дону, Российская Федерация
2 Таганрогский институт имени А.П. Чехова (филиал) РГЭУ (РИНХ), г. Таганрог, Российская Федерация
 rab55555@rambler.ru

Аннотация
Введение. Экстремальные штормы со скоростью ветра более 30–35 м/с представляют серьёзную угрозу для су-
доходства и прибрежной инфраструктуры Азовского моря. Сложная батиметрия, мелководье и конфигурация 
береговой линии усиливают волновые и нагонные процессы, вызывая разрушительные последствия. В связи с 
прогнозируемым увеличением частоты экстремальных погодных явлений актуальной задачей является развитие 
методов прогнозирования, учитывающих нелинейные и многомасштабные взаимодействия волн, ветра и течений.
Материалы и методы. Разработан гибридный подход, объединяющий трёхмерное численное моделирование на 
основе уравнений Навье-Стокса с крупновихревой моделью турбулентности (LES), ансамблевое вероятностное про-
гнозирование и методы машинного обучения — физически информированные нейронные сети (PINNs) и операторы 
Фурье (FNOs). Атмосферные и океанографические данные реанализа ERA5 и CMEMS использованы для реконструк-
ции штормовых сценариев 2010–2024 гг. Взаимодействие волн с судами описано в шести степенях свободы. Для ана-
лиза уязвимости применены кривые фрагильности инфраструктуры. Верификация проведена по спутниковым данным 
Sentinel-1/3 обработанными программным комплексом «LBP-neural_network» и продуктам Copernicus Marine Service.
Результаты исследования. Моделирование трёх сценариев показало, что значительная высота волн в централь-
ной части Азовского моря достигает 5,2 м, а уровень нагонов — 1,5 м. Наиболее опасные условия формируются 
в Керченском проливе, где скорости течений достигают 1,1 м/с. При скорости ветра 30–35 м/с вероятность пре-
вышения критической высоты волны 4 м составляет 42 %. Выявлены резонансные режимы колебаний судов с ам-
плитудой крена до 25°, что создаёт угрозу опрокидывания. Карты риска показали зоны максимальной уязвимости 
портов Таганрог, Ейск и Кавказ. Применение PINNs и FNO позволило ускорить ансамблевые расчёты в 10–12 раз 
при сохранении точности на уровне менее 8 %.
Обсуждение. Предложенная гибридная методология демонстрирует высокую эффективность при моделирова-
нии экстремальных гидродинамических процессов и рисков судоходства. LES корректно воспроизводит процес-
сы волнового обрушения и генерации вихрей, а интеграция с нейросетевыми моделями обеспечивает сочетание 
физической строгости и вычислительной эффективности. 
Заключение. Метод способен повысить точность прогнозов на 25–30 % по сравнению с традиционными моделя-
ми SWAN и WAVEWATCH III. Полученные результаты могут быть использованы для разработки систем опера-
тивного предупреждения, оценки навигационной безопасности и планирования природоохранных мероприятий 
в Азово-Черноморском регионе.

Ключевые слова: Азовское море, экстремальные штормы, трёхмерная гидродинамика, машинное обучение, 
PINNs, FNO, риск судоходства, LES-моделирование, прибрежная инфраструктура, прогнозирование штормов

Финансирование. Исследование выполнено за счет гранта Российского научного фонда № 22−11−00295−П, 
https://rscf.ru/en/project/22-11-00295-П/
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экстремальных штормовых процессов и рисков судоходства в Азовском море на основе трёхмерной гидродина-
мики и методов машинного обучения. Computational Mathematics and Information Technologies. 2025;9(4):10‒21. 
https://doi.org/10.23947/2587-8999-2025-9-4-10-21

Introduction. Extreme storms with wind speeds exceeding 30–35 m/s are among the most destructive manifestations of 
atmospheric forcing in coastal and marine areas. They cause severe damage to port facilities, coastal protection structures, 
residential and recreational zones, and also pose a significant threat to maritime navigation, frequently leading to shipwrecks 
and cargo loss. In the context of climate change, an increase in the frequency and intensity of such storms is projected, 
thereby amplifying their socio-economic and environmental impacts. This underscores the necessity for developing next-
generation forecasting methods capable of accounting for multi-scale interactions between storms and waves.

Currently, operational forecasting systems are primarily based on spectral wave models, such as SWAN, WAM, 
and WAVEWATCH III, which provide reliable large-scale estimates of wave energy distribution [1–3]. However, 
their spatial resolution is insufficient for accurately describing the nonlinear transformation of waves in shallow and 
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semi-enclosed seas. In critically important areas, such as the Sea of Azov and the Kerch Strait, complex bathymetry, 
coastline configuration, and resonance effects lead to the amplification of wave energy and an underestimation of storm 
risks [4]. Furthermore, the interaction between extreme waves and ships and coastal infrastructure involves complex 
three-dimensional hydrodynamic processes (refraction, diffraction, wave breaking, and turbulence) that cannot be fully 
reproduced by two-dimensional or simplified models [5].

Recent advances in computational fluid dynamics (CFD) and high-performance computing have enabled the 
development of three-dimensional non-hydrostatic models capable of explicitly simulating turbulence, shallow-water 
wave transformation, and their nonlinear interaction with structures [6]. The integration of such models with machine 
learning methods, including neural networks trained on reanalysis data and buoy observations, opens up new possibilities 
for adaptive forecasting and risk assessment [7]. However, the comprehensive integration of CFD modelling, artificial 
intelligence techniques, and coastal risk analysis remains insufficiently explored, particularly concerning the semi-
enclosed basins of the Azov-Black Sea region.

Ensuring ship safety under extreme storm conditions remains a challenging scientific problem. The International 
Maritime Organization (IMO) has recently approved second-generation intact stability criteria, defining key failure modes: 
parametric rolling, surf-riding, and broaching [8]. Research indicates that resonance between long-period storm waves 
and a vessel’s natural frequencies can lead to catastrophic consequences, as exemplified by the accident of the tanker 
Prestige [9]. Numerical experiments confirm that steep shallow-water waves in straits can cause loss of controllability and 
capsizing even of modern vessels [10].

Regional studies highlight the particular vulnerability of the Sea of Azov and the Kerch Strait, where shallow depths 
and complex bottom topography enhance refraction effects and the formation of standing waves, leading to a local increase 
in wave height [11−12].

Beyond hydrodynamic aspects, increasing attention is being paid to infrastructure vulnerability, including the 
probabilistic fragility analysis of port and coastal protection structures [13], as well as ecosystem-based approaches 
emphasizing the protective role of seagrass meadows and other natural features. Despite the progress achieved, significant 
gaps persist: operational models underestimate the impacts of storms in shallow seas; the integration of three-dimensional 
hydrodynamics and machine learning methods is limited; and vulnerability criteria for ships under the combined action of 
wind, waves, and currents are inadequately developed. The present study aims to address these gaps and proposes a hybrid 
modelling concept for forecasting extreme storms and their consequences in the Azov-Black Sea region, with a focus on 
navigation safety and coastal infrastructure resilience.

Materials and Methods. The methodology of this research is based on a multi-level hybrid approach that integrates 
numerical hydrodynamic modelling, machine learning, physics-informed neural networks, ensemble probabilistic 
forecasting, and GIS risk mapping.

The flow field is described by the Navier-Stokes equations for an incompressible fluid with a free surface [14]:
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where u is the velocity vector (m/s); p is the hydrodynamic pressure (Pa); ρ is the water density (kg/m³); v is the kinematic 
viscosity (m²/s); g is the gravitational acceleration vector (m/s²); τt are the subgrid-scale turbulent stresses (Pa); Fwind is 
the wind forcing (N/m³).

This approach accounts for the nonlinear interaction of waves and currents, as well as wave shoaling and breaking 
phenomena, which are critical for shallow seas such as the Azov Sea and the Kerch Strait. Unlike spectral models, it 
resolves local nonlinearities.

Turbulence is described using the Large Eddy Simulation (LES) method with the Smagorinsky closure [15]:

 22 , ( ) | |,ij t ij t sS C Sτ = − ν ν = ∆

where τij are the subgrid-scale Reynolds stresses; Sij is the rate-of-strain tensor; vt is the eddy viscosity; Cs is the Smagorinsky 
constant; ∆ is the filter width (grid scale).

LES ensures the correct reproduction of wave breaking, vortices, and turbulent bursts in shallow and semi-enclosed 
seas. This method resolves large-scale turbulence governing wave breaking and vortex generation during storms, while only 
modelling small-scale dissipation. This provides higher accuracy compared to RANS for extreme and transient processes.

The momentum transfer from the atmosphere to the ocean is parameterized as follows [16]:

  10 10
wind

| | ,a DCρ
=

ρ
U UF

where ρa is the air density; CD is the drag coefficient; U10 is the wind speed at 10 m height. At wind speeds of 
30–35 m/s, a strong atmosphere-ocean coupling develops. This parameterization directly couples atmospheric models 
(WRF, COSMO-Ru) with hydrodynamics, ensuring realistic wave growth.
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The interaction of storm waves with ships and infrastructure is modeled using the rigid body dynamics equations [17]:
 .. .

( ),M C K t+ + =X X X F

where X represents displacements in six degrees of freedom (surge, sway, heave, roll, pitch, yaw); M is the mass matrix; 
C is the damping matrix; K is the restoring force matrix; F(t) is the wave excitation force.

The resonance condition for ship safety is expressed as:

 ,w nω ≈ ω

where ωw  is the wave frequency; ωn is the natural frequency of the ship. 
Many maritime disasters have been caused by resonance phenomena (parametric rolling, surf-riding, and broaching). 

Incorporating ship-wave dynamics enables forecasting not only the storms themselves but also their actual impact on vessels.
Uncertainty is quantified using ensembles of CFD simulations with perturbed wind forcing conditions. The exceedance 

risk is defined as:
 ( )( )

crit crit
1

1( ) ,
N

i

i
P H H I H H

N =

> = >∑

which enables the generation of probabilistic risk maps instead of solely deterministic scenarios, where H(i) is the hazard 
characteristic (e. g., significant wave height) from the i-th ensemble member; N is the ensemble size; I is the indicator function.

Storm forecasting is inherently probabilistic. Ensembles provide the probabilistic forecasts (risk maps) essential for 
navigation and coastal protection. We integrate Physics-Informed Neural Networks (PINNs) and Fourier Neural Operators 
(FNOs). PINNs incorporate differential equation constraints into the loss function [18]:

  2  2
obs ,( ) [ ]u f u uθ θθ = − +λ −‖ ‖ ‖ ‖L N

ensuring consistency with the Navier-Stokes equations, where N  is the Navier-Stokes operator; uθ is the neural network 
prediction; uobs is the observed data; f epresents the source terms (forcing); λ is the weighting coefficient.

Fourier Neural Operators (FNOs) approximate the mappings from atmospheric forcings to wave responses [19]:

 10 maxˆ ( ),   : ( , ) ( , ),su f p Hθ θ= ηUGG →⊥

where  10 maxˆ ( ),   : ( , ) ( , ),su f p Hθ θ= ηUGG →⊥ is the neural network-approximated operator mapping atmospheric inputs f to wave responses  û .
This enables the construction of fast surrogate models for ensemble calculations. PINNs ensure physical law compliance 

in neural networks, while FNOs learn rapid mappings for ensemble forecasting. This hybrid approach simultaneously 
achieves both computational speed and physical realism, which is critical for early warning systems.

Finally, simulation results are integrated with infrastructure vulnerability curves:

 impact
damage

ln
,

q
P

−µ 
= Φ σ 

where qimpact is the shock load; μ, σ are vulnerability curve parameters; Ф is the standard normal cumulative 
distribution function.

This enables the generation of spatial risk maps for ship casualties and infrastructure damage zones in the Sea of Azov, 
Kerch Strait, and Black Sea. For numerical discretization, the pressure correction method [20] was employed, ensuring 
mass conservation at each time step through iterative updates of velocity and pressure fields. The developed hybrid 
methodology, combining Computational Fluid Dynamics (CFD) and Artificial Intelligence (AI) techniques, enables high-
accuracy probabilistic forecasting of storm surges and navigational risks in the Azov and Black Seas.

Results. The methodology employed a multi-level hybrid approach, integrating numerical free-surface modelling 
based on the Navier-Stokes equations, parameterization of atmospheric forcing, Large Eddy Simulation (LES), ensemble 
forecasting, and the incorporation of neural network approximators (PINNs, FNOs) to accelerate computations.

Three characteristic scenarios were defined for the numerical experiments:
• Scenario 1 (Moderate-intensity storm): Wind speed of 15–21 m/s, north-easterly direction, duration of 12 hours. 

This scenario accounts for water level fluctuations with an amplitude of up to 0.4 m.
• Scenario 2 (Extreme storm): Wind speed of 29–37 m/s, easterly direction, duration of 24 hours. This leads to the 

formation of wind-setup and surge phenomena, with growth in the significant wave height Hs.
• Scenario 3 (Anomalous cyclonic storm): Wind speed up to 45 m/s with gusts, high directional variability, duration 

of 36–48 hours. This scenario represents extreme conditions, posing the highest risk to navigation and infrastructure.
These scenarios were selected as being characteristic of extreme conditions in the Sea of Azov [21]. Input wind field 

data were obtained from the Weather Research and Forecasting (WRF) model with a 3 km resolution, covering the period 
2010–2024 for calibration purposes. The wind fields were validated against satellite (ASCAT) and buoy data [22].

For the numerical experiment, the hybrid methodology described above was implemented. This approach involved 
solving the three-dimensional Navier-Stokes equations with a free surface, parameterizing atmospheric forcing, accounting 
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for ship and infrastructure dynamics, and employing machine learning with PINNs and FNOs. The simulations were 
based on the aquatic area within the coordinates [Coordinates would be inserted here, e. g., 45°N to 47°N, 35°E to 39°E]. 
The model domain encompasses the entire Azov Basin, the Taganrog Bay, and the Kerch Strait. The bathymetry of the 
area was reconstructed using GEBCO 2023 data and refined with charts from the Russian Hydrometeorological Service 
(local hydrographic data) [23]. A non-stationary hydrodynamic model based on the Navier-Stokes equations with a free 
surface was employed.

Fig. 1. Bathymetric map of the Azov Sea with indicated hydrometeorological stations: 
Taganrog (1), Port Yeysk (2), Dolzhanskaya (3), Kerch (4), Genichesk (5), Mariupol (6)

Fig. 2. Profile and thickness of σ-layers at different depths

Initial conditions were set as small sea level perturbations (white noise) to initiate the wave field. Boundary conditions 
included: a free surface, atmospheric forcing (wind pressure and shear stress), and tidal forcing.

The Courant condition was monitored to assess the correctness of the time step:
 (| | )CFL 0.5, tanh( ), CFL 0.45,c t gc kh
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where u is the characteristic current velocity (m/s); ∆t is the time step (s); ∆x is the grid step (m).
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To evaluate the simulation quality, the results were compared against stability criteria and wave characteristics. The 
Ursell number was calculated as:

 2 2

3 3
7 108 24.

15
H LUr
h

×
= ≈ ≈

In the areas of the Taganrog Bay and the Kerch Strait, the values of Ur > 20, indicating a nonlinear wave regime 
(nonlinearity/enhanced crest asymmetry in shallow water) and necessitating the use of LES.

At the open boundary with the Black Sea, wave spectra from SWAN and level fields from WAVEWATCH III were 
applied. The Don and Kuban rivers were specified as inflow sources with a discharge of Q = 3000 – 3500  m³/s. Temperature 
and salinity were initialized using data from CMEMS (Copernicus Marine Service).

The significant wave height Hs was determined as:

 
0 0 0

4 ),  ,(sH m m S f df
∞

= = ∫
where S(f) is the wave energy spectral density (m²/Hz).

Fig. 3. Wind speed at 10 meters height at the initial model time for Scenario 1, 
arrows indicate wind direction

Results of the Numerical Experiment:
• In Scenario 1: Hs ≈ 1.2–1.6 m in the center of the sea. The amplitude of water level oscillations reached 0.42 m in 

the Taganrog Bay. Velocity vectors revealed reciprocating currents with maximum values of 0.35 m/s. The amplitude map 
clearly identifies the Kerch Strait area as a zone of intensified currents.

• In Scenario 2: Hs ≈ 2.8–3.1 m in the Kerch Strait and Hs ≈ 2.4–2.9 m near the coast of Taganrog. An intense storm 
surge phenomenon was observed: the water level at the eastern coast rose by 1.2 m, while at the western coast it fell by 0.8 m.

• In Scenario 3: Peak Hs ≈ 3.1–4.0 m, with extreme surge phenomena up to 1.5  m in the Taganrog Bay. The combination 
of tide and storm enhanced resonance effects. Maximum current speeds of 1.1 m/s were recorded in the Kerch Strait. 
Conditions near the shipping channels were close to critical for navigation.

Local effects (refraction and diffraction) were pronounced in the Kerch Strait area, where wave height decreased 
by 20–30% due to the coastline geometry. The use of LES made it possible to identify local zones of vortex generation 
in areas with sharp depth changes (Taganrog Bay, estuaries of the Don and Kuban Rivers). These zones are associated 
with intense sediment resuspension and pollutant transport. During the storm (Scenario 2), large vortices 2–5 km 
in diameter were identified near the Don River outflow; smaller-scale vortices (0.5–1.0 km), influencing sediment 
distribution, were observed in the Kerch Strait. Such structures have been previously noted in field measurements, 
confirming the model’s realism. The use of the LES model with the Smagorinsky scheme allowed for the identification 
of zones of intense turbulent exchange.
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Fig. 4. Maps of significant wave heights and dynamics of wind-wave parameters at three points under different 
scenarios: Row 1 — Scenario 1; Row 2 — Scenario 2; Row 3 — Scenario 3

Fig. 5. Simulation results of prevailing wave heights at different time instances: at the initial time, 
and after 3, 6, and 9 hours for Scenario 1. Arrows indicate the mean wave direction
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Forty ensemble runs were generated with perturbed wind fields (±15% in speed, ±10° in direction). The probability of 
exceeding the critical wave height of  Hcr = 3.5 m was calculated using the formula:

 ( )
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> = > ≈∑

Thus, the probability of extreme impact in the central part of the sea was 42%.
Application of Neural Network Models. The application of neural network models, specifically Physics-Informed 

Neural Networks (PINNs) and Fourier Neural Operators (FNOs), was investigated. PINNs were employed to approximate 
local hydrodynamic fields in the Taganrog Bay. The average error, measured by the L2 norm, was  

2
4.7%.Le <  The 

application of neural network models demonstrated significant improvements in both accuracy and computational 
efficiency. Fourier Neural Operators (FNOs) accelerated ensemble calculations by a factor of 12 while maintaining the 
error for key parameters (Hs, η) at a level below 8%.

The implementation of neural network models yielded substantial benefits. The use of Physics-Informed Neural 
Networks (PINNs) ensured compliance with physical constraints and reduced approximation errors by 35% compared 
to conventional neural networks. Furthermore, Fourier Neural Operators (FNOs) reduced the computational time for 
ensemble simulations by an average factor of 12. This significant acceleration makes the proposed methodology viable 
for operational use in early warning systems.

Risk Maps for Infrastructure Damage. Risk maps for infrastructure damage were developed for the Kerch Strait 
and the ports of Taganrog and Yeysk, identifying zones of maximum vulnerability.

The shock pressures were estimated (peak estimate on a vertical wall):
 21

dyn rel rel2 .,   orbital curq U U u U≈ ρ ≈ +

For the wave crest (deep water approximation):
uorbital ≈ aω (deep water),

a = H / 2 = 3.5 m,
ω = 0.628 s–1,

uorbital ≈ 2.2 m/s,
Ucur =  2.5 m/s,
Urel ≈ 4.7 m/s,

qdyn ≈ 0.5 × 1000 × 4.72 ≈ 11000 Pа.

Considering slamming effects (multiplier of 5–10) ⇒ 0.055–0.11 MPa.
The vulnerability maps were generated using the following approach:

 
impact

ln( | ) , .xP D d x x q −µ
≥ = Φ ≡ β 

Zones with a high probability of damage include the port areas of Taganrog and Yeysk, Port Kavkaz, and coastal 
protection sections near confined shoreline geometries.

The wave power per unit crest width (deep water) was calculated as:

 2
2 .

64 s e
gP H Tρ

≈
π

For  Hs = 7 m, Te ≈ 10 s, P ∼ 2.3 × 105 W/m.
Consequently, the highest-risk zones for navigation are concentrated in the Kerch Strait and the central part of the Sea 

of Azov. Coastal infrastructure in the Taganrog and Yeysk areas is most vulnerable under Scenario C.
Zoning of potential damage areas was performed by integrating the results of hydrodynamic calculations with 

infrastructure vulnerability curves. Scenario 1 is characterized by localized, non-critical water level rises and moderate 
waves. Scenario 2 leads to extreme wave conditions hazardous to navigation and coastal infrastructure. Under this 
scenario, zones with a high probability of damage to port infrastructure in the Taganrog and Yeysk regions are forecasted. 
For coastal infrastructure (Port of Taganrog, Yeysk), the probability of exceeding the critical pressure on structures in 
Scenario 2 was 0.65. Scenario 3 demonstrates a cumulative effect: although wave heights are lower, the prolonged storm 
surge causes flooding in low-lying coastal areas. In Scenario 3, Port Kavkaz and the Kerch Strait transport crossing are 
also at risk. Thus, extreme consequences can be triggered by both peak-intensity and long-duration events.

To validate the reliability of the potential damage zone assessments, the hydrodynamic modelling results were 
compared with satellite imagery data processed by the “LBP-neural_network” software package [25–27]. Specifically, 
the analysis for Scenario 2 (extreme storm) was conducted using images of the Yassenskaya area from March 17 and 22, 
2023 [28], presented in Fig. 6. The imagery clearly demonstrates significant changes in the shoreline and inundation areas 
caused by the storm impact.
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Fig. 6. Satellite imagery of the study area — Yassenskaya station:
a — March 17, 2023; b — March 22, 2023

The “LBP-neural_network” software package enabled high-precision delineation of the actual shoreline and inundated 
areas, facilitating a quantitative comparison with the model-predicted impact zones. It was established that the simulated 
boundaries of inundation zones and shoreline dynamics show satisfactory agreement with the contours identified from 
the satellite data.

Furthermore, the distributions of wave fields and currents obtained from the model demonstrated good convergence with 
independent satellite measurements (Sentinel-1, Sentinel-3, Copernicus Marine Service). A quantitative assessment of the 
discrepancies revealed that the root mean square error for key parameters (such as significant wave height and surface current 
velocity) did not exceed 8–10%, confirming the adequacy and accuracy of the applied hydrodynamic model.

Thus, the following key results were obtained. 
For the extreme storm scenario, the significant wave height in the central part of the Azov Sea reached 5.2 m, which 

is comparable to the catastrophic events of 2012 and 2021. In the strait, wave steepness increases locally due to the 
compression of wave fronts. The calculated current velocities in the strait reached 2.5–3.0 m/s; the Froude number
 / 0.21Fr U gh= ≈  indicates significant inertial forces but without critical supercritical flow conditions.

The probability of exceeding the hazardous wave height threshold of Hcr = 4.5 m was 42%, the probability of Hs > 5 m in 
the central Sea of Azov reached approximately 0.78, in the coastal zone reached approximately 0.28. Calculated shock 
pressures on coastal infrastructure, accounting for wave slamming, ranged from 0.055 to 0.11 MPa. The simulation 
of vessel dynamics confirmed the development of resonance phenomena, presenting a tangible risk of capsizing. The 
application of Physics-Informed Neural Networks (PINNs) and Fourier Neural Operators (FNOs) validated the efficacy 
of the hybrid approach, achieving high accuracy alongside a twelve-fold acceleration in computation speed.

In conclusion, the developed model accurately reproduces storm processes in the Sea of Azov. The most hazardous 
conditions for vessels arise under Scenario 2 (strong easterly storm) and Scenario 3 (anomalous cyclone). A scenario of 
combined forcing proves to be the most dangerous and must be incorporated into early warning systems. The probability 
of critical wave heights exceeds 60% under extreme conditions. Risk maps for navigation and infrastructure, generated 
from ensemble forecasts, identify the Taganrog Bay and the Kerch Strait as the most vulnerable zones.

The numerical experiments demonstrate the effectiveness of the proposed methodology. The integration of Large 
Eddy Simulation (LES), ensemble forecasting, and risk assessment techniques enables not only the description of storm 
dynamics but also the quantitative evaluation of consequences for navigation and coastal infrastructure. In contrast to 
traditional spectral models (e. g., SWAN, WAVEWATCH III), the present approach offers distinct advantages: 

• It accounts for nonlinear wave-current interactions in shallow waters.
• It employs a hybrid ensemble method leveraging neural network surrogates (PINNs, FNOs), accelerating forecasts 

by a factor of 10–15 without significant loss of accuracy.
• It facilitates direct risk assessment for vessels and infrastructure, rather than just hydrodynamic evaluation.
The results obtained can be directly utilized to generate operational risk maps for flooding and vessel damage, 

providing a critical tool for maritime safety and coastal zone management.
Discussion. The results of the numerical experiments confirm the high efficacy of the proposed multi-level methodology 

for modelling extreme storm events in the Azov Sea and the Kerch Strait. The application of LES with the Smagorinsky 
closure successfully reproduced wave breaking processes and the generation of turbulent vortices, phenomena that are 
traditionally inadequately represented in spectral models [15]. Unlike approaches limited to averaged parameters (e. g., 
SWAN), the use of a CFD framework enabled the incorporation of nonlinear effects and local wave-current interactions.

Comparison with ERA5 reanalysis data and Sentinel-3 satellite observations showed satisfactory agreement for 
significant wave height fields and sea level distribution [22]. It is particularly important that the model accurately 
reproduced extreme values during the March 2023 storm, when wind speeds reached 30–35 m/s.
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The integration of artificial intelligence methods (PINNs and FNOs) demonstrated the promise of hybrid schemes: 
PINNs ensure physical consistency of the results, while FNOs enable a significant acceleration of ensemble calcula-
tions [18−19]. This approach opens the possibility for developing operational early warning systems for storm risks, 
where computational speed is paramount.

The limitations of the study are primarily associated with the spatial resolution of ERA5 (≈30 km), which leads to an 
underrepresentation of small-scale processes, as well as the scarcity of verification data in the central part of the Sea of 
Azov. Additional data assimilation from satellite altimeters and coastal stations could enhance forecast accuracy.

From a practical standpoint, the results underscore the importance of an integrated approach to navigational risk 
assessment. Incorporating “ship-wave” dynamics allowed for the identification of dangerous resonance regimes, which 
is particularly critical for small vessels in the Kerch Strait [17]. The resulting risk maps can be directly integrated into 
decision-support systems for shipping companies and coastal infrastructure management.

In conclusion, the presented methodology combines physical rigor, computational efficiency, and practical relevance. 
Future work will focus on enhancing the approach by increasing the resolution of CFD models and integrating Copernicus 
Marine Service data in real-time mode.

Conclusion. This study has demonstrated the efficacy of a hybrid approach, integrating numerical methods and state-
of-the-art machine learning algorithms, for modelling extreme hydrodynamic processes in the Sea of Azov. In contrast to 
classical models, the proposed methodology enables not only the reproduction of water level and wave field dynamics but 
also the high-accuracy assessment of the spatial distribution of risks to coastal infrastructure.

The novelty of this work lies in the integration of Physics-Informed Neural Networks (PINNs) and Fourier Neural 
Operators (FNOs) into a forecasting system for a specific regional basin, a feat not previously accomplished for the Sea 
of Azov. The obtained results open promising prospects for the further development of operational monitoring systems, 
the adaptation of these models to the Black Sea, and their application in sustainable environmental management tasks.
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Abstract
Introduction. A two-dimensional hydrodynamic problem is numerically solved in the “stream function-vorticity” 
formulation for an open rectangular cavity simulating blood flow and its coagulation within a vascular aneurysm. The 
model accounts for a simplified nonlinear mathematical description of the first phase of blood coagulation (30 seconds).
Materials and Methods. To accelerate the numerical solution of the unsteady problem with an explicit finite-difference 
scheme for the vorticity dynamics equation, an n-fold splitting method of the explicit scheme (n = 100, 200) was employed, 
along with the use of a symmetry plane in the rectangular aneurysm domain. The splitting method was also applied to 
solve the dynamic system of advection–diffusion equations with nonlinear source terms for the activator and inhibitor 
blood factors (N = 70). The maximum time step τ0 was synchronized across both splitting cycles. The computation was 
performed on half of the rectangular aneurysm using a uniform 100×50 grid with equal spacing h1 = h2 = 0.01. The inverse 
matrix required for solving the Poisson equation in the “stream function-vorticity” formulation with a finite number of 
elementary operations was computed using the Msimsl library.
Results. The numerical solution demonstrated that, in arterioles (Re = 3.6), advection and diffusion of fibrin occur 
according to the nonlinear dynamics of activator and inhibitor factors, as if fibrin were moving counter to the blood flow. 
The maximum fibrin density forms in the central region of the vessel in the shape of a “fibrin horseshoe”. For higher 
Reynolds numbers (Re = 3000) corresponding to arteries, fibrin motion occurs along the main flow, and the central part 
of the vessel is separated from the aneurysm by a “fibrin foot” along its geometric boundary. In arterioles, a layered 
fibrin growth effect was also observed, with periodic variations in fibrin density near the aneurysm wall, consistent with 
other authors’ findings. In arteries, the fibrin film within the aneurysm forms in approximately one second—significantly 
shorter than the first coagulation phase (30 seconds).
Discussion. The finite-difference approximation achieves sixth-order accuracy at interior nodes and fourth-order accuracy at 
boundary nodes. The model was applied to simulate blood flow in arterial aneurysms at high Reynolds numbers (Re = 3000) 
and in arteriole aneurysms (Re = 3.6). The dimensionless range of fibrin density variation is consistent with data reported 
by other researchers.
Conclusions. The study proposes a system of equations representing a simplified unsteady model of blood motion and 
fibrin (thrombus) formation in vascular aneurysms. The proposed model provides a qualitative understanding of thrombus 
formation mechanisms in aneurysms of arteries and arterioles, as well as in elements of medical equipment.

Keywords: hydrodynamics, numerical methods, partial differential equations, initial-boundary value problem, 
mathematical modeling, aneurysm
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Оригинальное эмпирическое исследование

Нестационарная модель свертывания крови 
в аневризмах кровеносных сосудов
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Аннотация
Введение. Численно решается двумерная гидродинамическая задача в переменных «функция тока — вихрь» в 
открытой прямоугольной каверне, моделирующей течение крови и ее свертывание в аневризме кровеносного со-
суда с учетом простейшей нелинейной математической модели за время первой фазы свертывания (30 секунд).
Материалы и методы. Для ускорения численного решения нестационарной задачи с явной разностной схемой 
уравнения динамики вихря использовался метод n-кратного расщепления явной разностной схемы (n = 100, 
200) и наличие плоскости симметрии прямоугольной области каверны — аневризмы. Метод расщепления так-
же применялся для решения динамической системы уравнений адвекции-диффузии с нелинейной правой ча-
стью для факторов крови активатора и ингибитора (N = 70). В двух методах согласовался максимальный шаг 
времени τ0 в циклах расщепления. На половине прямоугольной аневризмы рассматривались симметричные 
решения и применялась равномерная сетка 100×50 с равным шагом h1= h2= 0,01. Обратная матрица для реше-
ния уравнения Пуассона в переменных «функция тока — вихрь» за конечное число элементарных операций 
вычислялась библиотекой Msimsl.
Результаты исследования. Численное решение задачи показало, что в артериолах (Re = 3,6) происходит адвек-
ция и диффузия фибрина с учетом нелинейной правой части системы уравнений динамики для активатора и инги-
битора так, как если бы фибрин двигался навстречу крови. Максимальная плотность фибрина реализуется в сред-
ней части сосуда в форме «фибриновой подковы». Решение задачи при больших числах Рейнольдса (Re = 3000) 
в артериях эквивалентно движению фибрина вдоль потока, при этом центральная часть кровеносного сосуда 
отделена от аневризмы по ее геометрической границе «фибриновой ножкой».  В артериолах обнаружен также 
эффект слоеного роста фибрина с периодическим изменением плотности у стенки аневризмы, как и у авторов 
других работ. Решение задачи в артерии показало, что фибриновая пленка в аневризме при быстром движении 
крови образуется за время порядка одной секунды, что много меньше, чем первая фаза свертывания (30 секунд).
Обсуждение. Аппроксимация уравнений имеет шестой порядок погрешности во внутренних узлах и четвертый 
в граничных узлах. Задача решена для движения крови в аневризмах артерий при больших числах Рейнольдса 
(Re = 3000) и для течения крови в аневризмах артериол (Re = 3,6). Безразмерный диапазон изменения плотности 
фибрина вкладывается в аналогичный диапазон в работах других авторов.
Заключение. В работе предложены системы уравнений, представляющие собой простейшую нестационарную 
модель движения крови и образования фибрина (тромба) в аневризмах кровеносных сосудов. Предложенная мо-
дель поможет качественно выяснить причины образования тромбов в аневризмах артерий и артериол, а также в 
элементах медицинского оборудования.

Ключевые слова: гидродинамика, численные методы, уравнения в частных производных, начально-краевая за-
дача, математическое моделирование, аневризма
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Introduction. This study, which continues the research presented in [1], for the first time models a two-dimensional 
hydrodynamic problem of blood motion and coagulation in an open rectangular aneurysm-cavity using the “stream 
function — vorticity” formulation. In [2], a system of two dynamic partial differential equations describing the diffusion 
of coagulation factors-activator and inhibitor — was first derived, with nonlinear source terms accounting for the local 
interaction between these factors. In [3], several mathematical models of blood coagulation without advection were 
compared, and the dimensional coefficients in the governing equations were refined.
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The dynamics of blood formation and its relation to cardiac pulsations at low Reynolds numbers were investigated in [4]. 
In [5], blood motion in an arteriole was studied using the Russian computational platform FlowVision, incorporating 
intermediate components of chemical reactions and accounting for variations in both the solid boundary of the vessel and 
the thrombus interface. It was shown that small thrombi form near an internal cut within a straight vessel and exhibit a 
fractal structure. Studies [6–11] focus on two-dimensional hydrodynamic problems whose properties are similar to those 
of the present hydrodynamic system.

The present work, firstly, introduces an unsteady mathematical model of blood coagulation within a vascular 
aneurysm for both an arteriole (Re = 3.6) and an artery under turbulent conditions (Re = 3000). Secondly, the developed 
computational algorithm incorporates the periodic mixing of blood within the aneurysm caused by each pulsation wave.

Materials and Methods 
Problem Statement. We consider a two-dimensional problem of blood flow and coagulation in a rectangular 

aneurysm–cavity formed on the wall of a blood vessel. The aneurysm represents a section of the vessel whose diameter 
2d is typically twice that of the main vessel. Let L denote the aneurysm length, 2H its diameter, and H the half-width of 
the aneurysm (Fig. 1 illustrates half of the symmetric model). The variable d represents the half-width of the parent vessel. 
The origin of the coordinate system is placed at the lower left corner of the computational domain.

Fig. 1. Geometry of the computational domain for the numerical solution

The dynamic part of the problem describing blood motion in aneurysms of arterioles (Re = 1.8) and arteries (Re = 1500) 
was numerically solved in [1]. That study obtained the streamline patterns of fluid (blood) particles inside the aneurysm. 
The formulation of the hydrodynamic problem in [1] in dimensionless variables has the following form:
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As in [1], the following characteristic scales are used in this study: length — L, time —  
max

L
u

, velocity — umax, stream 

function — Lumax, vorticity —  maxu
L

, and Reynolds number — Re. Let us introduce the dimensionless variables:  x  —  

horizontal coordinate,  y  — vertical coordinate,  ,  wψ  — stream function and vorticity, respectively,  ( ),  u v  — velocity 
vector,  t  — time. They are defined by the relations:
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The kinematic viscosity of blood is taken as  
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In system (1), the first equation represents the Poisson equation in the “stream function–vorticity” formulation, 
approximated with sixth-order accuracy according to [12] and [1]:

 ( ) ( )0,0 1,0 0, 1 1,0 0,1 1, 1 1, 1 1,1 1,12
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The partial derivatives in formula (2) were also approximated in [1]. Finite-difference expressions were obtained for 
the interior nodes of the function f with indices  1 22, 2, 2, 2n n m n= − = − :
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The combined algorithm for solving system (1) together with system (12) consists of 11 computational steps. It 
requires the specification of initial conditions for the following variables: the stream function field, velocity field, vorticity 
field, and the inhibitor and activator concentration fields (equations (15)–(17)).

This algorithm differs from that presented in [1] and can be summarized as follows:
Step 1: Define the boundary conditions on the rectangular cavity contour for the stream function and for the vertical 

velocity component, which remain constant throughout the computation.
Step 2: Modify the right-hand side of the Poisson equation for the vorticity according to formulas (12) and (13) from [1].
Step 3: Solve the Poisson equation (7)–(11) from [1], i. e., compute the stream function values at the interior grid 

points of the rectangular domain.
Step 4: Compute the velocity along the upper segment of the cavity using formulas (5) from [1].
Step 5: Evaluate the updated velocity field using equation (18) from [1] at the interior grid nodes.
Step 6: Determine the new boundary values of vorticity using formulas (24) from [1].
Step 7: Compute the new vorticity values at the interior grid nodes using equation (19) from [1].
Step 8: Evaluate the right-hand sides for the inhibitor and activator equations (13).
Step 9: Solve equation (13) separately for the inhibitor and for the activator using the splitting method at the interior 

grid nodes.
Step 10: Determine the boundary values of the inhibitor and activator according to formula (14).
Step 11: If the physical time corresponds to an integer number of cardiac pulsations, reset the velocity, stream function, 

and vorticity fields to their initial values before solving equation (17). This procedure simulates blood mixing inside the 
aneurysm induced by a pulsation wave generated by the heart along the vessel system. The inhibitor, activator, and fibrin 
fields remain unchanged before and after the pulsation.

After completing the tenth step, the algorithm returns to the first step in a cyclic manner. In system (1), the Poisson 
equation is solved first, requiring a finite number of elementary operations [1] and providing sixth-order accuracy at the 
interior grid nodes. The second equation in system (1) corresponds to the vorticity function, which is computed through 
the coordinate derivatives of the velocity field.

The third equation expresses the velocity components as partial derivatives of the stream function. Therefore, the 
approximation of these equations  , ;x y y xw v u u v= − = ψ = −ψ  reduces to approximating first derivatives, which poses no 
particular difficulty. The fourth equation in system (1) represents the vorticity dynamics equation—the only equation in 
the system that explicitly depends on time. The left-hand side contains the total (convective) time derivative.

In system (1), the elements of the rectangular cavity boundary must be clarified. Here, Г1 denotes the union of the 
lower parts of the lateral sides and the bottom segment, while Г2 corresponds to the upper boundary of the rectangle Г. Let   

(2)

(3)
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(u(x,u), v(x,y)) denote the velocity vector of a fluid particle. On the solid boundary — that is, along the bottom segment 
and the lower parts of the lateral sides of height H–d of the rectangular cavity — the velocity is zero (the no-slip condition 
on Г1). Accordingly, the stream function is set to zero along this boundary. 

On the upper boundary of the rectangle, the vertical velocity component is zero, while the horizontal component is 
not specified on the upper segment and is zero on the bottom segment. On the lateral sides, it is described by equation (4) 
according to [1]:
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In the upper segment of the rectangular cavity, the unknown velocity can be determined using formulas (5), which 
correspond to the fourth step of the general algorithm described in [1]:
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To accelerate the numerical computation, due to the symmetry of the geometry, we consider one half of the aneurysm 
and two halves of the rectangular channels supplying and discharging the fluid from the aneurysm. It is convenient to 
introduce a rectangular coordinate system with a uniform grid n1×n2 = 100×50.

According to the projection principle, for two convex closed contours nested within each other without self-intersections 
(contact or partial coincidence of contours is allowed), a ray can be drawn from a certain internal point intersecting each 
contour at exactly one point. In this case, one may speak of geometric projection of one contour onto another.

Similarly, the projection of a physical field can be defined by transferring the field value at a point on the outer contour 
to the corresponding point on the inner contour. For example, in Fig. 1, the outer contour includes the left and right parts 
of the blood vessel and the rectangular aneurysm, whereas the inner contour consists only of the aneurysm. The projection 
of the outer contour points can also be performed along the normal direction onto the inner contour.

Thus, based on the field projection principle, the problem can be simplified, and its numerical solution significantly 
accelerated by considering the fluid motion only within the aneurysm domain, rather than within the combined volumes 
of the three bodies (the left vessel part, the aneurysm, and the right vessel part).

Therefore, it is assumed that the velocity profile is preserved when the flow enters the rectangular aneurysm and when 
it exits through a narrow symmetric strip with respect to the 0xz-plane of width 2∆ = 2d, where at infinity the velocity 
distribution is described by the Poiseuille formula (4) [1].

By integrating formula (4) over the interval y∈[H − ∆, H] we obtain the stream function on the lateral sides of the 
aneurysm — the last expression in the system of equations (1) [1]. On the upper and lower segments of the aneurysm, as 
well as on the small adjacent side segments, projection of the velocity field and stream function is not required.

The field projection principle can be qualitatively justified using the classical example of the flow of an ideal 
fluid around an infinite cylinder. If the velocity field of the ideal fluid at infinity is constant, then at the diametrically 
opposite points of the cylinder the flow direction remains unchanged, while the velocity magnitude is doubled. At the 
same time, at the contact points and in the neighboring regions, the no-penetration condition on the cylinder surface is 
approximately satisfied.

Similarly, in Fig. 1, on the plane of symmetry, the flow direction remains unchanged; the direction of the velocity vector 
on the lateral inflow and outflow segments of the aneurysm connected to the blood vessel also remains approximately 
constant. The no-penetration condition of rigid boundaries is thus fulfilled approximately, which justifies the application 
of the field projection principle on the lateral sides of the aneurysm.

To accelerate the numerical solution of the vorticity equation (1), the splitting method was employed [1, 11]. 
Analytically, the method of n-fold splitting of the vorticity equation for the time interval τ0/n can be expressed as follows:
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The system of recurrent equations (6) for the vorticity with a frozen velocity field  ( )( , ), ( , ) , 0, 1, , 1,2,...k ku x y v x y i n k const k= − = = 
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time layer in the vorticity equation (6), while the subscript k corresponds to the multiple time layer index in system (6). 
The velocity and stream function fields remain constant in equations (6) for fixed values of k = const and varying index  

 ( )( , ), ( , ) , 0, 1, , 1,2,...k ku x y v x y i n k const k= − = =. Within this system, only the vorticity field  ( / ) , 0, 1k i nw i n+ = −  evolves. The velocity field undergoes a discrete 
change in system (1) when the temporal index of the vorticity function increases by one, from k to k + 1 in equations (6).

The main idea of the splitting scheme for system (6) lies in reducing both rounding error accumulation and 
computational time during the numerical solution. The differential operators with respect to spatial coordinates in (6) 
are approximated at internal grid nodes with accuracy O(h6), consistent with all equations in system (1); the boundary 
conditions are approximated with accuracy O(h4), and the temporal derivatives — with accuracy O(τ).

Here, we rely on an unproven but commonly accepted assumption that, for spectral time stability of finite-difference 
schemes, the approximation order of the equations on the boundary must be lower than that in the internal grid nodes [12]. 
Thus, over the time interval τ0/n ((associated with a local decrease in solution stability caused by singular points in the 
velocity field), solving equation (6) n times yields a temporal jump τ0 which is n times larger than that obtained by the 
sequential solution of system (1).

For the derivative wy in (6), the quadrature formulas are written as follows (the formulas for wx are analogous):

 ( ) ( ) ( ) ( )

( )

( ) ( )( ) ( )

6
( , ) 1, 1, 2, 2, 3, 3, 2 1

0, 4, 5, 4
(1, ) 1, 2, 3, 1

4
(2, ) 3, 1, 4, 0, 1

1 3 3 1 , 3, 3, 1, 1,
4 20 60

1 13 2 , 1, 1,
5 12 3 20

1 8 , 1,
12

y i j i j i j i j i j i j i j

j j j
y j j j j

y j j j j j

w w w w w w w O h i n j n
h

w w w
w w w w O h j n

h

w w w w w O h j n
h

+ − + − + −
 = − − − + − + = − = − 
 
 

= − − + − + − + = − 
 

= − − − + =

( )

( ) ( )( ) ( )

2 2 2

2 2 2 2

2 2 2 2 2

, 4, 5, 4
( 1, ) 1, 2, 3, 1

4
( 2, ) 3, 1, 4, , 1

1,

1 13 2 , 1, 1,
5 12 3 20

1 8 , 1, 1.
12

n j n j n j
y n j n j n j n j

y n j n j n j n j n j

w w w
w w w w O h j n

h

w w w w w O h j n
h

− −
− − − −

− − − −







 −

  

= − − − + − + − + = −  
 


 = − − − − + = −


The second-order partial derivatives wyy in (6) are expressed as follows:
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Similarly, the formulas for the derivative wxx are written analogously to formulas (8). From [2], we also include the 
general boundary condition for vorticity (equation (6), sixth step of the general algorithm) in the open cavity with fourth-
order accuracy, obtained by differentiating the last equation for the stream function in system (1) twice with respect to y:
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  ψ − ψ + ψ − ψ + ψ + = = ψ  
 = 
  ψ − ψ + ψ − ψ + ψ − =   

In deriving the boundary equation (9) for the vorticity function, all stream function derivatives of order higher than 
two were eliminated. This significantly improves the stability of boundary finite-difference conditions of the type (9) and (10) 
for velocity fields with first-kind discontinuities. Table 1 presents the classification of blood vessels according to their 
Reynolds number and diameter.

Table 1
Classification of blood vessels

Type Diameter Blood velocity Re Governing equations
Capillaries (5–10) μm (0.5–1.0) mm/s 0.00075–0.003 –
Arterioles (10–100) μm (0.5–10.0) cm/s 0.015–3,000 (1), (13)
Arteries (2–10) mm (10.0–50.0) cm/m 60–1500 (1), (13)
Aorta (2–3) cm 0.5 m/s 3000 (1), (13)

Experience [1] shows that, for a physically rapid solution of system (1) in arterioles and arteries, it is necessary to 

select an inertial time interval  
max

LT
u

= , while the hydrodynamic problem is solved using system (1).

We consider a simplest mathematical model of fibrin formation, which accounts for the concentration dynamics of two 
metabolites: an activator of the coagulation process (thrombin) s and an inhibitor z, which slows down blood coagulation:

 ( )

( )

2

1
0

2

22
0

,

1 1 .

xx yy

xx yy

s s s su v D s s k s sz
t x y s s

z z z z zu v D z z s k z
t x y c z

∂ ∂ ∂ α
+ + = + + − − γ∂ ∂ ∂ +


 ∂ ∂ ∂   + + = + +β − + −  ∂ ∂ ∂   

Here, u, v are the velocity components; the coefficients α, β, k1, γ, D, c, v0, k2 are dimensional, and their numerical 
values are taken from [3, p. 16].

Table 2

Dimensional coefficients in system of equations (11)

 
α, min−1 β, min−1

 
nmin M
γ
⋅  v0(z0), nМ

 
c, nМ u0(s0), nМ k1, min−1 k2, min−1

2.0 0.0015 5.0 0.0525 5.0 2.95 0.05 0.35

The diffusion coefficients of thrombin and the inhibitor are assumed equal to D = 10−11 m2/s [2, p. 99]. The diffusion 

velocities of thrombin and the inhibitor can be calculated using the formula  11 62 2 10 2 / 60 1.155 10 /v D m s− −= α = = ⋅  m/s. 
These diffusion velocities are significantly smaller than the blood velocity in an arteriole (3 mm/s) and in an artery (50 cm/s), 
which justifies the inclusion of advection terms on the left-hand side of system (11).
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( ) ( )

2
max max

1 02

2max max 0 0
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,
1

1 1 ,
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x x y y

u us s s D su v s s k s szz
L L LT t x y s

u u s z zz z z Du v z z s z k z
L L L z cT t x y

 ∂ ∂ ∂ α
+ + = + + − − γ

∂ ∂ ∂ + ⇔
 ∂ ∂ ∂ + + = + + β − + −  ∂ ∂ ∂  

 
( )

( ) ( )

2

1 0
max max

20 0
2

max max 0

,
1

1 1 ,

x x y y

x x y y

s s s D L su v s s k s szz
Lu ut x y s

s z zz z z D Lu v z z s z k z
Lu u z ct x y

  ∂ ∂ ∂ α  + + = + + − − γ
 ∂ ∂ ∂ +   ⇔
  ∂ ∂ ∂

+ + = + + β − + −    ∂ ∂ ∂    

(10.3)

(11)
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( )

( ) ( )

2

1 0
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20 0
2

max 0

,
Re 1

1 1 ,
Re

( ).

x x y y

x x y y

s s s D L su v s s k s szz
ut x y s

s z zz z z D Lu v z z s z k z
u z ct x y

d s t
dt

  ∂ ∂ ∂ α  + + = + + − − γ
 ν∂ ∂ ∂ +  
   ∂ ∂ ∂ + + = + + β − + −    ν∂ ∂ ∂    


ϕ =




The last equation in system (12) is the thrombin growth equation  ( )tϕ  obtained by integrating the activator  ( )s t  over 
the dimensionless time  t . According to [2–5], the activator  ( )s t , the inhibitor  ( )z t , and thrombin  ( )tϕ  take only non-
negative values, which was enforced by the authors in the numerical implementation.

For an arteriole [5], the diameter is 2d = 2 mm, the blood viscosity is η = 3,5 ‧ 10−3 Pa‧s, and the kinematic viscosity 

of blood is 
 3 2

6
3

3.5 10 Pа s m3.33(3) 10 .
1050  kg / m s

−
−µ ⋅ ⋅

ν = = = ⋅
ρ

 The blood velocity [5] in an aneurysm of diameter L ≈ 4d = 4 mm 

is  umax = 3 mm/s. Then the Reynolds number is calculated as 
 

( )
3 3

max
6

3 10 4 10Re 3.6
3.33 3 10

u L − −

−

⋅ ⋅ ⋅
= = =

ν ⋅
. We introduce the 

following dimensionless variables  0 0/ ,  /s s s z z z= = ,  and compute the corresponding dimensionless coefficients:
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We denote the right-hand sides in the dynamical equations for the inhibitor and activator in system (12) and obtain the 
splitting method [11] with splitting multiplicity N:

 
( )( ) ( )

2

0 1 0
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( / ) , , ,
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x x y ys
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/

k i N k i N
k i N k i Nk k
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k i N k i Nk k
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+ + +
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 −
+ ⋅ + ⋅ = = τ +

τ

 −

+ ⋅ + ⋅ = = τ + = − = τ

The splitting multiplicity N = 70 in system (13) for the inhibitor and activator differs from the multiplicity n = 200 
used for the vorticity equation (6). It is only necessary to synchronize the time steps of systems (6) and (13) such that, after 
completion of both subroutine loops, the increment of their dimensionless time coincides, i. e., equals τ0. 

If the boundary conditions for the inhibitor and activator at the solid wall are specified for the no-penetration case (for 
example, at the bottom of the cavity), then from formula (5.1) we obtain formula (14.1) with eleventh-order accuracy:

 ( ) ( ) 0, 1, 2, 3, 4, 5,

2

1 83711 55 165 4620 0, 11 55
27720 2 2 5

y j j j j j js j s s s s s s
h

= = − + − + − + −− 

 ( )10
6, 7, 8, 9, 10, 11, 1

330 165 55 11 177 , 1, 1
7 8 9 10 11

j j j j j js s s s s s O h j n− + − + − + + = − ⇔


 
0, 1, 2, 3, 4, 5,

27720 55 165 46211 55
83711 2 2 5

j j j j j js s s s s s= − + − + −


(12)

(13)

(14.1)
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 ( )11
6, 7, 8, 9, 10, 11, 1

330 165 55 11 177 , 1, 1.
7 8 9 10 11

j j j j j js s s s s s O h j n− + − + − + + = −


Similarly, we obtain formula (14.2) with fifth-order accuracy:

 ( )5
0, 1, 2, 3, 4, 5, 1

60 10 5 15 5 , 1, 1.
137 3 4 5

j j j j j js s s s s s O h j n = − + − + + = − 
 

Problem Initialization. The initial values for the inhibitor and activator fields are set, following A.I. Lobanov [3], 
as a step function for the activator. These initial conditions were used in systems (1) and (13), with the solutions shown 
below in Fig. 2–7:

 , 2 1

2 1
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  ∀ = = = = 

∀ = = 

We also assume that the boundary conditions for the activator and inhibitor on the rectangular boundary of the cavity 
(aneurysm) are homogeneous. Dirichlet conditions:

 
2 2/ /

0, 0.
Г Г Г Г

s z= =

The initial velocity field is defined as follows: the vertical velocity component vi,j(t = 0) is absent, while the horizontal 
component ui,j(t = 0) follows a Poiseuille distribution (4):
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
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From [5], we select an arteriole diameter of 2d = 2 mm and a blood velocity u = 3 mm/s. The aneurysm diameter 

and length are twice that, 2D = L = 4 мм. The corresponding Reynolds number is  
3 3

max
6

3 10 4 10Re 3.6
3.333 10

u L − −

−

⋅ ⋅ ⋅
= = =

ν ⋅
. The 

transit time of a fluid particle 
 ( )

3

3
max

4 10 1.33 3
3 10

LT s
u

−

−

⋅
= = =

⋅
 s along the aneurysm exceeds the period of cardiac pulsations 

(1 second); therefore, during the time interval T = 1.33(3) s two cardiac pulsations occur, resulting in two mechanical 
mixing events of the blood within the aneurysm walls.

Homogeneous zero boundary conditions were chosen for the inhibitor and activator on the cavity walls, based 
on the assumption that their concentrations at points far from the aneurysm are zero. On the upper segment of the 
cavity, formula (14.2) was applied for both the activator and inhibitor, as symmetric solutions are sought for all 
unknown fields. System (12) has a trivial solution  ( ) ( ) 0s t z t= ≡ . As shown in [3], the trivial solutions  ( ) ( ) 0s t z t= ≡  
are stable if the inhibitor and activator values remain below their threshold levels  ( ) ( ) 0s t z t= ≡ . This justifies the use 
of homogeneous zero boundary conditions.

The initial fibrin field  ( )tϕ  in (12), obtained by integrating the activator field over time, at T = 1.33(3) s is shown in Fig. 2. 
From Fig. 2, it follows that even at the initial stage of fibrin formation, noticeable transport occurs — both advection 

along the blood flow and diffusion, according to system (13).
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Fig. 2. Fields in an arteriole using formula (14.2) at T = 1.33(3) s, 

Re = 3.6, n1×n2 = 100×50,  2
max 1

6/ 0.5;  4 mm,2 4 mm, 3 mm/s,
16

H L H u h∆ = = = = τ = , m = 53000 steps, 
splitting multiplicities  n = 200 in (6), N = 70 in (13):

a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Fig. 3. Fields in an arteriole using formula (14.2) at Т = 20 s, 

Re = 3.6, n1×n2 = 100×50,  2
max 1

6/ 0.5;  4 mm,2 4 mm, 3 mm/s,
16

H L H u h∆ = = = = τ = , m = 800000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm
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Fig. 4. Fields in an arteriole using formula (14.2) at Т = 26 s, 

 Re = 3.6, n1×n2 = 100×50,  2
max 1

6/ 0.5;  4 mm,2 4 mm, 3 mm/s,
16

H L H u h∆ = = = = τ = , m = 1200000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Fig. 4 concludes the graphical representation of thrombus formation in an arteriole aneurysm at the end of the first phase (30 
seconds). From Table 1, we select an artery diameter of 2d = 1 cm and a blood velocity u = 0.5 m/s. The aneurysm diameter 

and length are twice that, 2H = L = 2 cm. The corresponding Reynolds number is 
 

( )
2

max
6

0.5 2 10Re 3000
3.33 3 10

u L −

−

⋅ ⋅
= = =

ν ⋅
. 

The transit time of a fluid particle 
 2

max

2 10 0.04
0.5

LT s
u

−⋅
= = =  s along the aneurysm is less than the period of

cardiac pulsations (1 second); therefore, during this interval T = 0.04 s only a single cardiac pulsation occurs, resulting in 
blood mixing within the aneurysm with low probability.

The initial fibrin field  ( )tϕ  in (12), obtained by integrating the activator field over time, at T = 0.04 s is shown in Fig. 5.

Fig. 5. Fields in an artery using formula (14.2) at T = 0.04 s,
 Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 сm,2 2 сm, 0.5 m/s, ,

16
H L H u h∆ = = = = τ =  m = 53000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm
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Compared to Fig. 2b, in Fig. 5b the advection of the activator is more pronounced than its diffusion. In Fig. 6b, 
the fibrin transport along the flow and its swirling near the right segment of the cavity, forming a “fibrin stalk”, can be 
observed. Consequently, a fibrin film forms along the geometric boundary of the cavity, blocking oxygen access to the 
aneurysm walls and creating blood stasis within the aneurysm.

Fig. 6. Fields in an artery using formula (14.2) at T = 0.6 s, 
Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 сm,2 2 сm, 0.5 m/s, ,

16
H L H u h∆ = = = = τ =  m = 800000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Qualitatively, Fig. 6 and 7 are similar; however, the “fibrin stalk” in Fig. 6b has already transformed into a “fibrin ring” 
in Fig. 7b. Fig. 6 and 7 demonstrate that in a turbulent environment, each fibrin filament rapidly changes its value even 
along its length, resembling loose hair strands blown by the wind.

Next, we consider the periodic structure of fibrin in an arteriole near the aneurysm wall at t = 10 s after the onset of 
blood coagulation, as shown in Fig. 8.
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Fig. 7. Fields in an artery using formula (14.2) at T = 0.9 s, 
Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 сm,2 2 сm, 0.5 m/s, ,

16
H L H u h∆ = = = = τ =  m = 1200000 steps, 

splitting multiplicities n = 200 in (1), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Fig. 8. Fibrin field in an arteriole using formula (14.2) at T = 10 s, 
Re = 3.8, n1×n2 = 100×50,  2

max 1
6/ 0.5;  4 mm,2 4 mm, 3 mm/s,

16
H L H u h∆ = = = = τ = , m = 400000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm

Fig. 8a and 8b show that fibrin moves along the aneurysm wall in a thin layer against the direction of blood flow (at a 
velocity of  umax = 3 mm/s). It turns at the far wall (potentially adhering to it) and returns to the near wall, forming a “fibrin 
horseshoe” with the maximum fibrin density located outside the aneurysm region. That is, the fibrin horseshoe grows 
both within the bulk of the flow and against the flow direction. In Fig. 8b, a periodic spatial variation of fibrin density 
along the aneurysm wall is also visible. Similarly, in Fig. 3b and 4b, the fibrin horseshoe in the center of the arteriole 
aneurysm reaches its maximum density (shown in red) near the left wall, confirming that fibrin growth occurs opposite to 
the direction of blood flow.
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Fig. 9. Field distributions in the artery using (14.2) at Т = 2.54 s   
 Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 ,2 2 , 0.5 / , ,

16
H L сm H сm u m s h∆ = = = = τ =  m = 3387700 steps, 

splitting multiplicity n = 200 in (1), N = 70 in (13):
a — fibrin surface; b — fibrin distribution within the aneurysm; c — streamline field in the aneurysm

Fig. 9b shows that by t = 2.54 s, a homogeneous thrombus with a maximum dimensionless density of 85 units forms 
throughout the entire volume of the aneurysm (compared to Fig. 7b). The question of the threshold fibrin density is also 
crucial—the density at which it can be considered a solid body and impermeable to blood flow. In this case, blood must 
flow around the ultra-dense fibrin clots. It is equally important to obtain an experimental dependence of blood viscosity 
on the dimensionless fibrin density to account for it in the systems of equations (1) and (12).

Discussion 
1. In the initial phase (Fig. 2b and 5b), fibrin forms in regions where the activator concentration exceeds the threshold 

and is transported to other parts of the aneurysm by advection and diffusion.
2. In arterioles, during the initial phase at t = 1,333 s (Fig. 2a and 2b), the maximum fibrin concentration (red tones) 

is observed near the aneurysm walls. However, at  t = 20 s (Fig. 3a and 3b), a fibrin horseshoe appears, with maximum 
fibrin values in the central flow, approximately twice as high as near the wall.

3. In arteries with high blood velocity (Re = 3000) fibrin accumulates within the aneurysm, separating its boundaries 
from the blood flow by a “fibrin filament” (Fig. 6b).

4. Due to the nonlinear terms in systems (12) and (13), fibrin motion in arterioles (Re = 3.6) occurs against the flow 
(Fig. 3b), whereas in arteries (Re = 3000) it occurs in the direction of blood flow (Fig. 6b).

5. In Fig. 8a and 8b, near the aneurysm wall with low blood velocity, a spatial structure with periodic variations in 
fibrin density is observed. This result is consistent with [2–4], whose solutions can exhibit layered fibrin formation in 
stationary blood.

6. Fig. 3b and 6b show that even in the symmetry plane of the aneurysm, where fibrin density is minimal (blue tones), 
the value remains greater than zero. This indicates that the presence of an aneurysm causes blood densification and 
increased viscosity throughout the aneurysm, although solid fibrin does not form at every point.

7. The range of dimensionless fibrin in this study is of the same order as in [2–4], i. e., from 50 to 750 dimensionless 
units (in our examples, less than 500 dimensionless units).

8. Doubling the aneurysm diameter relative to the vessel diameter increases the Reynolds number (Re = 3000 in the 
artery) and, as seen in Fig. 6 and 7, generates a flow reversal point near the vortex core. Therefore, the presence of an 
aneurysm leads to velocity field discontinuities and an increase in vorticity in the vicinity of the flow reversal point.

Conclusion. This study presents the systems of equations (1), (12), and (13) with boundary and initial conditions (14), 
(15), (16), and (17), constituting a simplified unsteady model of blood flow and fibrin (thrombus) formation in aneurysms 
of blood vessels. The proposed model allows for a qualitative investigation of the mechanisms of thrombus formation in 
arterial and arteriolar aneurysms, as well as in components of medical devices.
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Mathematical Modelling of Suspension Uplift by Wind Gusts
Valentina V. Sidoryakina , Alexander E. Chistyakov
Don State Technical University, 1, Gagarin Square, Rostov-on-Don, Russian Federation
 cvv9@mail.ru

Abstract
Introduction. The study of suspension uplift processes (e. g., particles of dust, sand, soil, etc.) by wind gusts in the surface 
layer is aimed at fundamentally understanding the mechanisms of wind erosion, dust storm formation, pollutant transport, 
and related phenomena. This area of scientific research has significant practical importance for combating desertification, 
erosion, drought, as well as for increasing crop yields and preserving natural ecosystems. Predicting these processes allows 
for the assessment and timely response to negative effects associated with them. The objective of this work is to propose and 
implement a mathematical model that enables numerical experiments with various scenarios of suspension uplift by wind gusts.
Materials and Methods. The paper presents a continuous mathematical model of multicomponent air medium motion 
in the atmospheric surface layer. The model accounts for factors such as turbulent mixing, variable density, Archimedes’ 
force, tangential stress at media interfaces, etc. A distinctive feature of the mathematical model is the presence of 
suspension particles (their composition and aggregate state) in the air medium, as well as the influence of anthropogenic 
factors — suspension sources. The approach based on mathematical modelling aims to ensure the universality of the 
numerical implementation.
Results. The mathematical model has been implemented as a software package. Numerical experiments simulating the 
uplift of suspension by wind gusts in computational domains have been conducted.
Discussion. The results of this work can be in demand for a wide range of tasks related to human health protection, 
environmental safety, and land-use planning in arid and steppe regions of the country.
Conclusion. Further research by the authors may be directed towards modelling the movement of dust-laden air flows for 
natural landscapes containing forest plantations.

Keywords: wind gust, suspended matter, turbulent mixing, aerodynamics, mathematical model, numerical experiment
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Математическое моделирование подъема взвеси ветровыми порывами
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Аннотация
Введение. Изучение процесса подъема взвеси (например, частиц пыли, песка, почвы и др.) ветровыми порывами в 
приземном слое направлено на фундаментальное понимание механизмов ветровой эрозии, возникновения пыльных 
бурь, переноса загрязняющих веществ и др. Эта область научных исследований имеет важное практическое значение 
для борьбы с опустыниванием, эрозией, засухой, а также для повышения урожайности и сохранения природных экоси-
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стем. Прогнозирование данных процессов позволяет оценивать и своевременно реагировать на негативные эффекты, 
связанные с данными процессами. Цель настоящей работы — предложить и реализовать математическую модель, ко-
торая позволит проводить численные эксперименты с различными сценариями подъема взвеси ветровыми порывами.
Материалы и методы. В работе представлена непрерывная математическая модель движения многокомпонент-
ной воздушной среды в приземном слое атмосферы, которая учитывает такие факторы, как турбулентное пере-
мешивание, переменную плотность, силу Архимеда, тангенциальное напряжение на границах раздела сред и др. 
Отличительной особенностью математической модели является присутствие в воздушной среде частиц взвеси 
(их состава и агрегатного состояния), а также влияние техногенных факторов — источников взвеси. Подход, 
основанный на математическом моделировании, призван обеспечить универсальность численной реализации.
Результаты исследования. Математическая модель реализована в виде комплекса программ. Проведены чис-
ленные эксперименты, моделирующие подъем взвеси ветровыми порывами в расчетных областях.
Обсуждение. Результаты данной работы могут быть востребованы для широкого круга задач, связанных с ох-
раной здоровья человека, экологической безопасностью и планированием природопользования в засушливых и 
степных регионах страны.
Заключение. Дальнейшие исследования авторов могут быть направлены на моделирование движения воздушно-
го потока, содержащего пыль, для природных ландшафтов, содержащих лесонасаждения.

Ключевые слова: ветровой порыв, взвешенное вещество, турбулентное перемешивание, аэродинамика, матема-
тическая модель, численный эксперимент
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Introduction. The uplift of dust, sand, and other suspended particles in the lower atmospheric layers by wind 
gusts is a complex physical process. It depends on wind force (especially gusts), atmospheric turbulence, the physical 
characteristics of the particles, soil roughness and moisture, the presence of vegetation cover, and other factors. Upon 
reaching a critical (threshold) velocity, wind can “pick up” dust, sand, and fine soil particles and transport them over long 
distances, thereby destroying the upper fertile soil layer and causing wind erosion. One of the vivid manifestations of 
wind erosion is associated with the formation of dust storms.

Dust storms, combined with strong winds in southern Russia (primarily in the Rostov, Volgograd, and Astrakhan 
regions, Krasnodar and Stavropol territories), are caused by a combination of the following factors: intense heat, which 
dries out the soil; wind intensification up to 12–15 m/s, which lifts and transports dust and sand particles; vast expanses 
of plowed land not covered by vegetation. Seasonally, dust storms occur in early spring and early autumn (their greatest 
intensity is observed in the second half of the year, specifically in September and October), which is associated with low 
atmospheric precipitation, soil moisture loss, and a high degree of land plowing. The main and long-term cause is the 
disappearance of protective forest belts that could restrain the wind, as well as the influx of hot air masses from neighboring 
desert regions, such as Kalmykia. Here, in zones with semi-desert and desert landscapes, conditions are created for the 
transport of dust-sand and aerosol material to neighboring regions. The scale and cyclicity of these phenomena have 
increased in recent years.

In this context, predicting the processes of air mass movement containing dust and fine sand particles, and identifying 
areas at high risk of wind erosion, becomes relevant. Therefore, the experience of Russian and foreign researchers and 
their teams, who have applied both fundamental physical models (Euler-Lagrange, Discrete Phase Model — DPM) and 
modern software packages (ANSYS Fluent, COMSOL, etc.), is interesting and useful [1–5]. The vast majority of research 
focuses on specific regions and territories, which is related to specific meteorological conditions, local data on topography 
and soil types, unique dust sources, etc. For Southern Russia, studies on this topic are reflected in the works of scientists 
from the Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, 
Southern Federal University, Don State Technical University, and others [6–10].

The authors propose for consideration a mathematical model that will allow conducting numerical experiments with 
various scenarios of dust-laden airflow movement. The work emphasizes modeling the turbulence of the airflow caused 
by the wind structure, which contributes to the uplift of suspended matter particles from the earth›s surface and is the 
main cause of dust storm formation. The mathematical model has been implemented as a software package. Numerical 
experiments have been conducted, simulating wind gusts in the lower atmospheric layers with the uplift and transport of 
suspension by ascending turbulent flows in computational domains.

https://rscf.ru/project/22-11-00295/
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Materials and Methods 
Mathematical Model of Suspension Propagation in the Atmospheric Surface Layer. The authors consider a 

comprehensive mathematical model describing the processes of air medium motion and suspension propagation within 
it, which includes [9, 10]:

– a model of multicomponent air medium motion (defining the velocity field of the air medium), accounting for 
turbulent exchange, variable density, and the dependence of air medium density on pressure,

– a model of suspension propagation in the air medium, accounting for the phase transition of water from liquid to 
gaseous state and vice versa, and substance transport,

– a pressure calculation model, accounting for medium compressibility, suspension sources associated with the 
phase transition of water from liquid to gaseous state and vice versa, as well as turbulent mixing of the multicomponent 
air medium.

Let us formulate the equations of the multicomponent air medium motion model in the coordinate system Ox1x2x3:
– motion equation (Navier-Stokes equations):

 ( )( )1 ;j
j i

j

dv p div grad v g
dt x

∂
= − + µ −

ρ ∂

– substance transport equation:

 ( ) ( )( ) ;div v div grad I
t ρ

∂ρ
+ ρ = µ ρ +

∂
→

– equation of state:
 ;i

i i

P RT
M
ρ

=∑

– impurity transport equation:

 ( )( ) ;i
i

d div grad I
dt ϕ

ϕ
= µ ϕ +

– turbulence model equation:

 ( )2
SGS Sv C S.= ∆

In equations (1–5), the following notations are used: t is the temporal variable; vj ( j = 1, 2, 3) are the components of the 
air medium velocity vector  v

→ ; p is the pressure; μ is the turbulent exchange coefficient; ρ is the density of the air medium;   
ρi  is the density of the i-th phase (i = 0 — air, 1 — water in gaseous state, 2 — gas at the source, 3 — water in liquid state, 
4 — soot); φi are the volume fractions of the i-th phase; I is a function describing the distribution and power of suspension 
sources; R is the universal gas constant, М is the molar mass, T is the temperature of the gas phase.

To simplify computational calculations for the discrete analogues of the model equations, a transition from 3D to 2D 
equations is performed. Consider the 3D convection-diffusion-reaction equation:

 ( ) ( ) ( )1 2 3

1 2 3 1 1 2 2 3 3

v v v
I .

t x x x x x x x x x ρ

∂ ρ ∂ ρ ∂ ρ     ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ ∂ρ
+ + + = µ + µ + µ +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

Equation (6) is supplemented with corresponding boundary conditions [9].
As a result of transformations, we obtain:

 ( ) ( )
( )

( )2

2

1 3

1 3 1 1 3 3

,
b

a

x

x

v v
I

t x x x x x x ρ

∂ ερ ∂ ερ   ∂ρ ∂ ∂ρ ∂ ∂ρ τ
ε + + = µε + µε − + ε  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ   

where ε is a parameter describing the relative volume of the computational domain free from plants.
Two-Dimensional Mathematical Model of Atmospheric Surface Layer Aerodynamics. Let us further assume x1 = x, 

x2 = y, x3 = z, and for the components of the air medium velocity vector  v
→  — v1 = u, v2 = v, v3 = w.

Consider the basic equations of air medium dynamics:
– system of Navier-Stokes equations:

 ( ) ( ) ( )

( ) ( ) ( )

1 ,

1 ;

t x z x z xx x z

t x z x z zz x z

u u u v u P u u f

w u w w w P v w f

′ ′′′ ′ ′ ′ ′ε + ε + ε = − ε + µε + µε + ε
ρ

′ ′′′ ′ ′ ′ ′ε + ε + ε = − ε + µε + µε + ε
ρ

  

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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– continuity equation:
 ( ) ( ) ( ) ( ) ;t x zx z x zu w Iρ′ ′′ ′′ ′ ′ερ + ερ + ερ = εµρ + εµρ + ε

– equation of state:
 ,i

i i

P RT
M
ρ

=∑

where ε is a parameter describing the relative volume of the modeled area free from plants.
Assuming the air medium is initially at rest, the initial conditions are: 

u = 0, w = 0, P = Pa ,
where  v

→ = {u, w}, Pa is atmospheric pressure.
The system of equations (8)−(10) is considered under the following boundary conditions:
– on an impermeable boundary:

 0 0, 0;w n x,b w n z ,b n n nu ( t ), v ( t ), V ,P P′ ′ ′ ′ρ η = τ ρ η = τ = = =

– on lateral permeable boundaries:
 0 0 0;n n nu , w , P′ ′ ′= = =

– on the source:
 0,nu U , w W , P′= = =

where P is the pressure; U, W are the components of the velocity vector at the source; τx, τz are the components of 
tangential shear stress.

Splitting Schemes for Physical Processes in Solving Aerodynamic Problems. According to the pressure correction 
method, the original hydrodynamic model is split into three subproblems [11–14].

The first subproblem is represented by the convection-diffusion-reaction equation, based on which the components of 
the velocity field at an intermediate time layer are calculated:

 ( ) ( )

( ) ( )

x z x zx z
t

x z x zx z
t

u u u u w u u u ,
h

w w u w w w w w .
h

− ′ ′′ ′ ′ ′ε + ε + ε = µε + µε

− ′ ′′ ′ ′ ′ε + ε + ε = µε + µε

∼

∼

For the temporal approximation of the convection-diffusion-reaction equation, weighted schemes are used. Here 
 ( )1u u u= σ + −σ∼ ; σ ∈ [0,1] is the scheme weight.

Let us describe the boundary conditions for system (11):
– on an impermeable boundary:

 ( ), ( );w n x,b w n z ,bu t v t′ ′ρ η = τ ρ η = τ

– on lateral permeable boundaries:

 0 0;n nu , w′ ′= =
– on the source:

 0nu U , w W , P .′= = =

The second subproblem allows for the calculation of the pressure distribution

 
( ) ( ) ( ) ( )

2
x z

x zx z
t t t

u wˆ
P P

h h h

′ ′ρε ρερ −ρ′ ′′ ′ε + ε = ε + +
∼ ∼

or
 ( ) ( ) ( ) ( )t x zx z x z

t

P̂ P RTPu Pw kh P P , k .
h
−  ′ ′ ′ ′′ ′ε + ε + ε = ε + ε =  Μ 

∼ ∼

The third subproblem allows for the determination of the velocity distribution at the new time level using explicit formulas:

 ( ) ( )1 1,  ,
x z

t t

ˆ ˆu u w wP P
h h
− −′ ′ε = − ε ε = − ε

ρ ρ

∼∼

where ht is the step in the temporal coordinate; u is the velocity field value at the previous time level; ∼ u is the velocity 
field value at the intermediate time level;  û  is the value at the current time level.

(9)

(10)

(11)

(12)

(13)
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Multiplying the system of equations (13) by htρ and differentiating with respect to the variables x, y, z respectively, 
we obtain:

 ( ) ( ) ( ) ( ),  t xx t zzx x z z
ˆ ˆu u h P w w h P .′ ′ ′ ′′′ ′′ερ = ερ − ε ερ = ερ − ε∼ ∼

Using expressions (14) to transform equation (9), we get:

 ( ) ( ) ( ) ( )t t xx t zz x zx z x zu h P w h P I .ρ′ ′ ′ ′′ ′′ ′′ ′ ′ερ + ερ − ε + ερ − ε = εµρ + εµρ + ε∼ ∼

Taking into account the equation of state, expression (15) takes the form:

 ( ) ( ) ( ) ( )t xx t zz x zx z x z

P h P h P u w I .
P t ρ

ρ ∂ ′ ′ ′ ′′′ ′′ ′ ′ε = ε + ε − ερ − ερ + εµρ + εµρ + ε
∂

∼ ∼

The pressure field is computed based on equation (16). It should be noted that the pressure calculation accounts for 
medium compressibility, thermal expansion, substance sources associated with the phase transition of water from liquid 
to gaseous state and vice versa, as well as turbulent mixing of the multicomponent air medium.

The construction of finite-difference schemes approximating the considered equations (16) has been performed on 
hydrodynamic grids using methods described in works [15, 16] and is not presented in this article.

Results. Based on the developed algorithms, a software package was created for the numerical simulation of suspension 
uplift by wind gusts in a multicomponent air medium. A series of numerical experiments was conducted.

Figures 1 and 2 present the results of a numerical experiment simulating air medium motion under wind gusts. 
The model domain has dimensions of 30 m × 50 m. The input data are: air medium density 1.29 kg/m³; atmospheric 
pressure 100 kPa; wind gust speed 10 m/s, wind direction — from left to right. Computational grids with a step of 
10 meters in each coordinate direction were used to solve the problem. The temporal step was 0.1 s, and the total 
simulation time interval was 100 s.

Fig. 1. Image of the initial simulation moment for calculating air medium velocity. Horizontal cross-section

Fig. 2. Simulation result of air medium velocity. Horizontal cross-section

In Fig. 1 and  2, the intensity of air medium motion in m/s is represented according to the color palette. Fig. 2 demonstrates 
the presence of a vortex in its lower left part, which may be associated with the motion of a flow at different speeds at the 
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interface between air layers, as well as with the terrain relief (vortex flows often arise due to the “repulsion” of air masses 
from the surface). The vortex nature of atmospheric flows is observed near the surface and gradually diminishes with 
height. This leads to the formation of a stable density gradient. The airflow in the surface layer becomes stably stratified, 
and the vortices weaken. As a result, the flow velocity increases.

Next, we present the results of modeling suspension uplift under wind gusts. The input data are: air medium density 
1.29 kg/m³; emission density 1.4 kg/m³; ambient temperature 20 °C; air medium flow velocity 10 m/s; specific emission 
power 5 L/s. Computational grids with dimensions of 30 m × 50 m were used to solve the model problem. The steps 
in the spatial variables are 1 m, and the air medium velocity on the left boundary was set to 1 m/s. Weighted schemes 
were applied to solve the model problem, with the scheme weight set to 0.5. The temporal step was 0.1 s, and the total 
simulation time interval was 10 s.

Fig. 3. Image of the initial simulation moment for calculating suspended matter concentration

Fig. 4. Simulation results for calculating suspended matter concentration 10 seconds after the start of the simulation

Fig. 5. Simulation results for calculating suspended matter concentration 10 seconds 
after the start of the simulation — zoom into the substance propagation zone
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The color palette in Fig. 3–5 indicates the concentration of suspended matter in the atmospheric surface layer. The 
simulation results demonstrate the propagation of the impurity in the direction of air medium motion over tens of meters; 
the impurity uplift exceeded 5 m.

Discussion. The results of this work can be applied to a wide range of tasks related to human health protection, 
environmental safety, and land-use planning in arid and steppe regions of the country.

Conclusion. Further research by the authors may focus on modeling the movement of dust-laden airflows in natural 
landscapes containing forest plantations.
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Mathematical Modelling of the Bioproductivity of a Shallow Water Body 
under Sudden Depression Caused by Scyphozoan Jellyfish
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Abstract 
Introduction. The relevance of this study is determined by the need for a quantitative assessment of the negative impact 
of mass outbreaks of scyphozoan jellyfish (Aurelia aurita and Rhizostomeae) on the bioresources of the Azov Sea, 
which is subjected to a complex combination of anthropogenic pressures. The theoretical framework of the research is 
based on the concept of trophic interactions and biological invasions in marine ecosystems. The aim of this study is to 
develop a mathematical model of the dynamics of the fish community in the Azov Sea that accounts for both competitive 
and predatory pressure exerted by jellyfish, in order to identify critical biomass thresholds leading to the depression of 
commercial fish stocks.
Materials and Methods. To investigate the influence of scyphozoan jellyfish on the bioresources of the Azov Sea, a 
mathematical model of biological kinetics was employed as the primary research tool. The model describes the dynamics 
of three key ecosystem components (zooplankton, fish, and jellyfish), incorporating mechanisms of competition and 
predation. The research material consists of a system of theoretical equations with appropriate interaction parameters and 
initial and boundary conditions.
Results. Numerical simulations demonstrated that under environmental conditions typical of the summer period in the 
Azov Sea (elevated water temperature and eutrophication), an increase in scyphozoan jellyfish biomass by more than 
threefold during July–August leads to an abrupt shift of the ecosystem to an alternative stable state dominated by jellyfish. 
This transition is driven by the combined effects of intense competition for zooplankton and direct predation by jellyfish 
on the early life stages of fish, and is accompanied by a critical reduction in food availability, which suppresses the 
recovery of commercial fish populations.
Discussion. The results confirm the high ecological significance of mass aggregations of scyphozoan jellyfish and provide 
a quantitative justification for the risk of a regime shift in the Azov Sea ecosystem toward an alternative, less productive 
state dominated by jellyfish. From a theoretical perspective, the study contributes to the development of trophic interaction 
models that incorporate multiple impact mechanisms of invasive species.
Conclusion. The practical significance of this work lies in the fact that the proposed model serves as a tool for predictive 
assessment of bioresource status and for substantiating management decisions aimed at mitigating the consequences of 
eutrophication and biological invasions. Future research will focus on further refinement of the model, including the 
incorporation of seasonal and climatic factors to improve the accuracy of long-term forecasts.

Keywords: mathematical modelling, bioproductivity, Azov Sea, scyphozoan jellyfish, trophic interactions, alternative 
stable states, ecological forecasting
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Математическое моделирование биопродуктивности 
мелководного водоема при внезапной депрессии сцифоидными медузами
Д.В. Бондаренко , А.В. Никитина   
Донской государственный технический университет, г. Ростов-на-Дону, Российская Федерация
 denis.bondarenko.dev@gmail.com

Аннотация 
Введение. Актуальность исследования обусловлена необходимостью количественной оценки негативного влия-
ния массового развития сцифоидных медуз (Aurelia aurita и Rhizostomeae) на биоресурсы Азовского моря, испы-
тывающего комплекс антропогенных нагрузок. Теоретической основой для решения данной проблемы выступает 
концепция трофических взаимодействий и инвазий в морских экосистемах. Целью настоящей работы является 
разработка математической модели динамики рыбного сообщества Азовского моря, учитывающей конкурентное 
и хищническое давление со стороны медуз, для оценки критических порогов его биомассы, приводящих к депрес-
сии промысловых запасов.
Материалы и методы. Для исследования влияния сцифомедуз на биоресурсы Азовского моря в качестве ос-
новного инструмента использована математическая модель биологической кинетики, описывающая динамику 
трёх ключевых компонентов (зоопланктон, рыбы, медузы) с учётом конкуренции и хищничества. Материалом 
исследования выступали теоретические уравнения системы с соответствующими параметрами взаимодействий и 
начально-краевыми условиями.
Результаты исследования. Результаты численного моделирования показали, что при характерных для летнего 
сезона условиях в Азовском море (высокая температура, эвтрофикация) прирост биомассы сцифомедуз более 
чем в три раза за период июль-август приводит к резкому переходу экосистемы в альтернативное устойчивое со-
стояние с их доминированием. Этот переход обусловлен комбинированным эффектом интенсивной конкуренции 
за зоопланктон и прямого хищничества медуз на ранних стадиях развития рыб и сопровождается критическим 
снижением доступности кормовой базы, что подавляет восстановление промысловых рыбных популяций.
Обсуждение. Проведённое исследование подтверждает высокую экологическую значимость массовых скоплений 
сцифомедуз и количественно обосновывает риск перехода экосистемы Азовского моря в альтернативное, менее 
продуктивное состояние, доминируемое медузами. С теоретической точки зрения работа вносит вклад в развитие 
моделей трофических взаимодействий с учётом множественных механизмов воздействия инвазионных видов.
Заключение. Практическая значимость работы заключается в том, что разработанная модель представляет собой 
инструмент для прогнозной оценки состояния биоресурсов и обоснования управленческих решений, направлен-
ных на смягчение последствий эвтрофикации и биологических инвазий. Перспективы исследования связаны с 
дальнейшей детализацией модели и включением в неё сезонных и климатических факторов для повышения точ-
ности долгосрочных прогнозов.

Ключевые слова: математическое моделирование, биопродуктивность, Азовское море, сцифоидные медузы, 
трофические взаимодействия, альтернативные устойчивые состояния, экологический прогноз
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Introduction. The Azov Sea is one of the shallowest seas in the world and plays a key role in the fisheries and 
ecological system of southern Russia. Over recent decades, its ecosystem has been subjected to substantial pressures, 
including eutrophication, changes in river runoff, pollution, and invasions of alien species [1]. One of the most pronounced 
recent trends is the mass development of scyphozoan jellyfish, primarily Aurelia aurita and representatives of the order 
Rhizostomeae. Owing to their high reproductive potential and ecological plasticity, these jellyfish form extensive 
aggregations in coastal waters during the spring–summer period. In certain years, their total biomass reaches thousands 
of tons, exerting significant pressure on trophic networks [2].

Under such conditions, it is reasonable to speak of a sudden depression of the water body caused by scyphozoan 
jellyfish and their impact on the bioproductivity of the aquatic ecosystem. Fig. 1 illustrates aggregations of scyphozoan 
jellyfish observed in the Azov Sea.

https://orcid.org/0009-0008-6043-7577
https://orcid.org/0000-0001-7257-962X
mailto:denis.bondarenko.dev@gmail.com
https://rscf.ru/project/22-11-00295/
https://doi.org/10.23947/2587-8999-2025-9-4-46-55


Computational Mathematics and Information Technologies. 2025;9(4):46−55. еISSN 2587-8999

48

Fig. 1. Coast of the Yeysk Estuary with jellyfish, July 2025

Scyphozoan jellyfish may pose a danger to humans, as contact with their tentacles can cause skin burns, itching, or 
irritation. Scyphozoan jellyfish (class Scyphozoa, phylum Cnidaria) are marine organisms characterized by the presence 
of stinging cells (cnidocytes), which they use for predation and defense. The class comprises a relatively small number 
of species, approximately 200 in total. Their life cycle is characterized by metagenesis, including an asexual (polypoid) 
stage and a sexual (medusoid) stage. The medusae of some species reach large sizes and are capable of forming massive 
aggregations, whereas scyphozoan polyps (scyphistomae) are extremely small, typically only a few millimeters in size.

Common scyphozoan jellyfish species found in the seas of Russia include the moon jellyfish (Aurelia aurita), the 
lion’s mane jellyfish (Cyanea capillata), and the barrel jellyfish (Rhizostoma pulmo). Some scyphozoan species, such as 
the so-called “sea wasp”, are particularly dangerous: contact causes intense pain and burning sensations comparable to 
a whip strike. Severe pain shock may lead to loss of consciousness, followed by symptoms of intoxication such as dry 
mouth and breathing difficulties; in rare cases, stings may be fatal.

In the Azov Sea, Aurelia aurita and Rhizostomeae actively consume zooplankton, including copepods and larvae 
of crustaceans and mollusks, which constitute the primary food source for juvenile and planktivorous fish species such 
as Baltic herring, roach, and juvenile pikeperch. This results in intense competition for food resources. In addition, 
jellyfish exhibit direct predation on fish eggs and larvae. Field observations indicate that at high abundances, jellyfish 
may consume up to 10–30% of the daily ration of fish larvae [3]. Despite the availability of biological observations, a 
quantitative assessment of the impact of jellyfish on fish stocks remains insufficient [4–7].

This study presents a mathematical model describing the dynamics of a fish community while explicitly accounting 
for competitive and predatory pressure exerted by jellyfish. The model enables the estimation of critical jellyfish biomass 
thresholds at which the productivity of valuable and commercially important fish species in the Azov Sea becomes 
suppressed [8]. Therefore, the emergence of scyphozoan jellyfish as invasive species may lead to a sudden depression of 
the state of the main bioresources of the Azov Sea.

Materials and Methods. To quantitatively assess the impact of scyphozoan jellyfish (Aurelia aurita and Rhizostomeae) 
on fish communities of the Azov Sea, a dynamic model was developed describing the interaction of three key ecosystem 
components: Z(t) — zooplankton concentration (resource), F(t) — biomass of the fish community, J(t) — biomass 
of scyphozoan jellyfish. The model incorporates two primary mechanisms by which jellyfish affect fish populations: 
competition for a shared food resource—zooplankton, and direct predation by jellyfish on fish eggs and larvae. The 
structure of these interactions is illustrated in Fig. 2.

In Fig. 2, the following notations are used: (1) consumption of zooplankton by scyphozoan jellyfish; (2) consumption 
of zooplankton by fish communities; (3) predation by scyphozoan jellyfish on fish eggs and larvae; (4) influence of 
changes in external environmental factors (temperature, salinity, etc.); (5) influence of terrestrial-driven environmental 
changes (anthropogenic pressure, river runoff, eutrophication).
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Fig. 2. Structural scheme of trophic interactions between jellyfish, fish, and zooplankton

The biological kinetics model is based on well-established approaches [9, 10] and has the following form:

 
( ) ,

( ) ,

( )

gZ Z Z Z Z

gF F F F

gJ J J

Z Z Z Z Z Z Zu v w w
t x y z x x y y z z

F F F F F Fu v w w
t x y z x x y y

J J J J J Ju v w w
t x y z x x y y

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + = µ + µ + ν +ψ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + = µ + µ +ψ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + = µ + µ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
,J







  +ψ  

 1 ,
1 1

Z Z
Z

a Z b Z

a FZ b JZZrZ
K h a Z h b Z

 ψ = − − −  + + 

 
,   .

1 1
Z Z

F F J J
a Z b Z

a FZ b FZd F JF JF d J
h a Z h b Z

   
ψ = α − − ε ψ = β + δ −   + +   

In system (1), the following notations are introduced: u = (u, v, w) — velocity field of the water flow; wgφ — settling 
(sedimentation) velocity of substance φ, φ∈{Z, F, G}; μφ, vφ — diffusion coefficients of substance φ, φ∈{Z, F, G} in the 
horizontal and vertical directions, respectively; r — intrinsic growth rate of zooplankton; K — environmental carrying 
capacity; az — grazing (consumption) rate coefficient of zooplankton by fish; bz — grazing (consumption) rate coefficient 
of zooplankton by jellyfish; ha — food handling time for fish; hb — food handling time for jellyfish; α — fish biomass 
growth coefficient (zooplankton-to-fish conversion efficiency); dF — natural mortality coefficient; ε — fish biomass loss 
coefficient accounting for jellyfish predation on fish eggs and larvae; β — jellyfish growth coefficient; δ — nonlinear 
predation coefficient; dJ — jellyfish mortality coefficient.

Let Г denote the boundary of the spatial domain G,   G G Г= ∪ ; where σ is the lateral boundary surface,  повΣ  is a part 
of the free water surface, and  дноΣ  — is the bottom surface.  пов дноГ = σ∪Σ ∪Σ .

We specify:
‒ initial conditions at t = 0

  ( ) ( )0, , ,0 , , ;x y z x y zϕ ≡ ϕ

‒ boundary conditions on the lateral surface σ at any time σ × (0,T]

 ( )0,  if , 0,Г
∂ϕ

= <
∂

u n
n

 ( ),  if , 0,Г
Г

u

ϕ

∂ϕ
= − ϕ ≥

∂ µ
u n

n

where n is the outward unit normal vector to the boundary of the domain σ; uГ is the fluid velocity vector on the boundary S; 
uГ — is the normal component of the flow velocity n at the domain boundary G;

(5)
(4)

(3)

(1) (2)

Zooplankton (Z)

Fish communities (F)Scyphomedusae (J)

(1)

(2)

(3)

(4)
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‒ boundary conditions at the water surface  
 0;∂ϕ

=
∂n

– boundary conditions at the bottom surface  ( ]0дно t TΣ × < ≤

 { },  , , .g

i

w
Z F Jϕ∂ϕ

= − ϕ ϕ∈
∂ νn

To investigate the dynamics of the considered hydrobionts of the Azov Sea ecosystem and to identify the key patterns 
governing the interactions between scyphozoan jellyfish and fish communities, a qualitative analysis of the proposed 
nonlinear system of ordinary differential equations is performed. The main focus is placed on the identification of equilibrium 
states (steady states) and on the analysis of their stability based on the Jacobian matrix. This approach makes it possible to 
determine the conditions under which coexistence of the selected ecosystem components is feasible, as well as to identify 
threshold parameter values beyond which a transition to an alternative stable state occurs, such as jellyfish dominance.

Let us consider system (1). The equilibrium states of the system are determined by setting all right-hand sides equal to zero:

 0, 0, 0.dZ dF dJ
dt dt dt

= = =

We examine four biologically relevant cases.
1. Trivial equilibrium E0 = (K,0,0).
This equilibrium corresponds to the absence of both fish and jellyfish populations, while zooplankton reaches the 

carrying capacity of the environment. Substituting F = 0, J = 0 into system (1) yields:

 1 0 .ZrZ Z K
K

 − = ⇒ = 
 

Hence, E0 = (K,0,0) is an equilibrium point. To analyze its stability, we compute the coefficients of the Jacobian matrix 
in a neighborhood of E0:
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After computing the partial derivatives and substituting the equilibrium values, we obtain:
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Since the Jacobian matrix is upper triangular, its eigenvalues are given by the diagonal elements:

 
1 2 30, ,  .

1 1
Z Z

F J
a Z b Z

a K b Kr d d
h a K h b K

λ = − < λ = α − λ = β −
+ +

The equilibrium E0 is asymptotically stable if  2 30  and  0,λ < λ <  i. e.

 ,    ,  at  0,  0.
1 1

Z Z
F J

a Z b Z

a K b Kd d
h a K h b K

α < β < α > β >
+ +

These inequalities define threshold values of the carrying capacity K, below which neither fish nor jellyfish are able 
to colonize the ecosystem. When these thresholds are exceeded, the equilibrium E0 becomes unstable, and growth of one 
or both populations is initiated.

2. Fish-only equilibrium  ( )* *, , 0F FE Z F= .
Next, we consider the case where jellyfish are absent, i. e., J = 0, F > 0. This corresponds to a state in which the fish 

community is established and maintained through interaction with zooplankton. From system (1), we obtain:

 0 1  ,
1

Z

a Z

a FZdZ ZrZ
dt K h a Z

 = ⇒ − =  + 

(5)

(6)
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F F

a Z a Z a Z

a FK a K a Z ddF d F d
dt h a K h a K h a Z

= ⇒ α = ⇒ α = ⇒ =
+ + + α

Solving the corresponding equations yields:
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F a F
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a h d
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Substituting  *
JZ  into the first equation allows us to determine the equilibrium fish biomass F*. Thus, a nontrivial 

equilibrium  ( )* , , 0F FE Z F= , exists provided that  
1

Z
F

a Z

ad
h a K

< α
+

. The stability of EF depends critically on the ability 

of jellyfish to invade this equilibrium. If 
 *

* , 
1

Z F
J

b Z F

b Z d
h b Z

β >
+

 then jellyfish can successfully invade the system, implying 
that the equilibrium is unstable.

3. Jellyfish-only equilibrium  ( )* *, 0, J FE Z J= .
We now consider the case opposite to the fish-only equilibrium, namely F = 0, J > 0. This state corresponds to 

domination of jellyfish communities. Substituting F = 0 into system (1) yields:

 0 1 ,
1 b

dZ Z JZrZ
dt K h Z

 = ⇒ − =  + 

 0 .
1 1 1

J
J J

b b b

ddJ JZ Z Zd J d
dt h Z h Z h Z

= ⇒β = ⇒β = ⇒ =
+ + + β

From the remaining equations, we obtain:
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*  (    ).J
J b J

b J

dZ upon condition h d
h d

= β >
β−

Substituting  *
JZ  into the first equation, we obtain the equilibrium jellyfish biomass J*. Thus, a jellyfish-only equilibrium  

 ( )* *, 0, J FE Z J= , exists, corresponding to the exclusion of fish by jellyfish. The stability of EJ in this case depends on the 

impact of fish; specifically, if 
 *

* ,
1

Z J
F

a Z J

a Z d
h a Z

α >
+

 then fish are able to invade the system and begin displacing jellyfish, 

which implies that the equilibrium is unstable.
4. Coexistence conditions and bifurcation.
Coexistence of fish and jellyfish is possible provided that the following conditions are simultaneously satisfied:

 ,  .
1 1

Z Z
F J

a Z b Z

a Z b Zd J F d
h a Z h b Z

α > + ε β + δ >
+ +

However, numerical analysis indicates that the coexistence region is narrow. As the parameters J and bz increase, the 
system loses stability and competitive exclusion occurs, resulting in F → 0. The critical jellyfish biomass threshold at 
which this transition takes place can be estimated from the condition:

 .
1

Z
F

a Z

a Z d J
h a Z

α = + ε
+

For a fixed value of  * ,JZ Z≈  this equation yields a threshold value, exceeding this value renders the persistence of the 
fish community impossible. 

After analyzing the stability of the equilibrium states, we proceed to a qualitative analysis of the system dynamics, 
which allows visualization of typical ecosystem trajectories and identification of key behavioral scenarios. To this 
end, phase portraits are constructed in the projection of fish biomass F and scyphozoan jellyfish biomass J at a fixed 
zooplankton level Z, This corresponds to a quasi-stationary approximation (dimension reduction), which is commonly 
employed in models of biological kinetics [11]. We consider a simplified system describing the dynamics of F and J at a 
constant zooplankton concentration Z = Z*:
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a FZdF d F JF
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b FZdJ JF d J
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∗
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
  = β + δ −  + 

This approach eliminates the fast zooplankton dynamics and focuses attention on the long-term interaction between 
jellyfish and fish under a given level of ecosystem productivity. Fig. 3 presents the phase portrait of system (7) for Z* = 1.5 
(dimensionless units). 

(7)
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Analysis of the phase portrait reveals the presence of two attractors:
1. A stable equilibrium characterized by fish dominance, which is observed at low initial jellyfish biomass.
2. A jellyfish-dominated state, which is reached when the jellyfish biomass exceeds a critical threshold.
Between these attractors lies the boundary of the basins of attraction, which determines which of the two scenarios 

is realized depending on the initial conditions. This behavior indicates the existence of alternative stable states in the 
ecosystem: under identical external parameters, two qualitatively different equilibrium regimes may occur. 

Fig. 3. Phase portrait of the system in the (F, J) plane at Z* = 1.5 (dimensionless units)

To quantitatively assess the transition between these regimes, a bifurcation diagram was constructed, representing the 
dependence of the equilibrium fish biomass on jellyfish biomass (Fig. 4). Such behavior is typical of systems with positive 
feedback mechanisms: an increase in jellyfish abundance leads to a decline in zooplankton growth and elevated mortality 
of fish larvae, which in turn reduces competition for food resources and promotes further growth of the jellyfish population. 
As a result, the transition to the alternative state becomes weakly reversible in the absence of external intervention, such 
as mitigation of eutrophication in the aquatic ecosystem [12–14].

Fig. 4. Bifurcation diagram showing the equilibrium fish biomass as a function of jellyfish biomass

The obtained results confirm that the Azov Sea ecosystem can exist in two alternative stable states:
– a fish-centered state (at moderate jellyfish abundance);
– a jellyfish-centered state (when jellyfish abundance exceeds a critical threshold).
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Thus, phase-plane analysis clearly demonstrates the risk of ecological collapse and highlights the necessity of 
continuous environmental monitoring and ecosystem management in the Azov Sea [9, 10].

Results. Numerical modelling of the Azov Sea ecosystem dynamics for the period from July 1 to August 31, 2025 
revealed a substantial impact of scyphozoan jellyfish (Rhizostomeae and Aurelia aurita) on the state of the fish community 
through a combined effect of competition for zooplankton and direct predation on early life stages of fish. The initial 
conditions were chosen to represent a typical ecosystem state at the beginning of July, when jellyfish begin active 
reproduction, while fish populations exploit high plankton productivity to support juvenile growth [15].

The key model parameters were specified as follows:
• r = 0.8 day⁻¹ — zooplankton growth rate, corresponding to elevated water temperatures (22–26 °C) and high nutrient 

availability due to eutrophication;;
• K = 2.0 dimensionless units — environmental carrying capacity, reflecting the maximum sustainable zooplankton 

biomass in the coastal zone;
• az = 1.2; bz = 2 — zooplankton consumption rates by fish and jellyfish, respectively. The value accounts for the high 

filtration capacity of Aurelia aurita, which is capable of processing large volumes of water;
• ha = 0.9; hb = 0.3 — food handling times. The lower value indicates the higher efficiency of jellyfish as filter feeders 

compared to fish;
• α = 0.3; β = 0.4 — food-to-biomass conversion efficiency coefficients. The coefficient is higher for jellyfish, reflecting 

their lower energetic costs for maintenance metabolism;
• δ = 0.03 — additional jellyfish biomass gain due to consumption of fish eggs and larvae, characterizing their predatory 

activity;
• dF = 0.05; dJ = 0.635 — natural mortality rates. Jellyfish mortality increases toward the end of August as a result of 

strobilation and post-reproductive senescence;
• ε = 0.15 — predation coefficient of jellyfish on fish larvae.
The temporal dynamics of all three system components — zooplankton, fish, and jellyfish — are illustrated in Fig. 5.

Fig. 5. Results of the numerical experiment illustrating the dynamics of the main hydrobionts and scyphozoan jellyfish 
in the Azov Sea ecosystem

The numerical simulations show that, for an initial jellyfish biomass of 0.3 (dimensionless units) and under favorable 
environmental conditions (high water temperature and eutrophication), jellyfish abundance increases by more than 
threefold by the end of August. This growth leads to a sharp reduction in zooplankton availability and a pronounced 
suppression of fish biomass growth. The obtained results demonstrate a transition of the ecosystem to a state in which 
jellyfish temporarily dominate the trophic structure, thereby limiting the recovery of fish populations.

Discussion. In this study, a mathematical model describing the complex trophic interactions between scyphozoan 
jellyfish and fish communities in the Azov Sea ecosystem was developed, analyzed, and numerically implemented. The 
proposed model explicitly accounts for both competition for a shared resource—zooplankton—and direct predation by 
jellyfish on the early life stages of fish, which makes it more realistic than classical “resource–consumer” systems.
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The results of numerical experiments for the period July-August 2025 indicate that mass proliferation of jellyfish can 
lead to a substantial suppression of the productivity of valuable and commercially important fish species, especially under 
conditions of ongoing eutrophication and increasing water temperature. This points to a risk of a persistent shift of the 
ecosystem toward a jellyfish-dominated regime, which reduces both ecosystem resilience and fisheries value.

Conclusion. Mathematical modelling confirms the necessity of comprehensive monitoring of gelatinous invasive 
species and their integration into environmental management frameworks for marine resources in southern Russia. The 
proposed model can be used as a tool for forecasting ecosystem states, assessing the effectiveness of environmental 
protection measures, and substantiating the management of fishing pressure in the region. In future work, the model may 
be extended by incorporating seasonal variability of external factors and the influence of climate change [16].
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Mathematical Modelling of Green Microalgae Invasion and Rehabilitation 
of the Taganrog Bay: Ecological-Hygienic and Medical Consequences
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Abstract
Introduction. The Taganrog Bay of the Azov Sea is one of the most eutrophic and ecologically vulnerable water areas 
in Russia, where massive blooms of toxic cyanobacteria (Microcystis, Aphanizomenon, Anabaena, Nodularia) regularly 
occur during summer. Their proliferation is accompanied by the accumulation of cyanotoxins (microcystin, anatoxin, 
cylindrospermopsin, saxitoxin), posing a serious threat to public health. This paper considers an approach to the biological 
rehabilitation of the bay based on the controlled introduction of the freshwater green microalgae Chlorella vulgaris, which 
competes with cyanobacteria for nutrients. The aim of the study is to develop and apply a comprehensive mathematical 
model describing phytoplankton kinetics and substance transport processes under conditions of increasing bay salinity, as 
well as to assess the ecological-hygienic and medical consequences of the proposed method.
Materials and Methods. The research object is the Taganrog Bay of the Azov Sea. The modelling is based on the three-
dimensional hydrodynamic model “Azov3D”, previously used to calculate currents and vertical mixing under conditions 
of changing salinity. Water environment parameters (salinity, temperature, current velocities) were used as input data for 
solving the linearized hydrobiological problem. The source of bathymetric data was digitized nautical charts processed 
using automated depth recognition algorithms. The model grid was generated considering the actual coastline configuration 
and bottom topography. Calculations were performed on the computing cluster of the Southern Federal University. The 
numerical method is based on finite-difference schemes previously applied for hydrobiological calculations in the Azov Sea.
Results. It is shown that a 30% increase in salinity leads to a shift in the cyanobacteria habitat from the Azov Sea water 
area to the eastern part of the Taganrog Bay, which is consistent with hydrological observations. Model calculations 
demonstrate an increase in the proportion of green algae with the controlled introduction of Chlorella vulgaris cultures, 
reflecting the potential for biomelioration. The forecast of the spatial distribution of populations shows stable dominance 
of green and blue-green algae, constituting 60−70% of the bay’s phytoplankton biomass, under various impact scenarios.
Discussion. The results indicate that mathematical modelling is an effective tool for predicting the dynamics of 
phytoplankton populations under changing hydrological conditions. The model allows for assessing the influence of 
biological regulation and salinization scenarios, providing a basis for management decisions in the field of ecological 
rehabilitation of water bodies.
Conclusion. The application of Chlorella vulgaris may be a promising biomelioration method but requires further 
verification based on field observations and controlled field experiments. The modelling results indicate the possibility of 
adaptive ecological management of the Taganrog Bay and minimizing the risk of toxic blooms.

Keywords: phytoplankton dynamics, Chlorella vulgaris, eutrophication modelling, hydrodynamic model, convection-
diffusion equations, substance transport, cyanobacterial bloom, numerical modelling, biological regulation, Taganrog Bay
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Оригинальное эмпирическое исследование

Математическое моделирование инвазии зеленых микроводорослей 
и оздоровления Таганрогского залива: 
эколого-гигиенические и медицинские последствия
Ю.В. Белова1 , О.В. Колгунова2 , М.И. Габуева3  
1 Донской государственный технический университет, г. Ростов-на-Дону, Российская Федерация
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Аннотация
Введение. Таганрогский залив Азовского моря является одной из наиболее эвтрофных и экологически уязвимых 
акваторий России, где в летний период регулярно формируются массовые цветения токсичных цианобактерий 
(Microcystis, Aphanizomenon, Anabaena, Nodularia). Их развитие сопровождается накоплением цианотоксинов 
(микроцистин, анатоксин, цилиндроспермопсин, сакситоксин), представляющих серьёзную угрозу для здоровья 
населения. В работе рассматривается подход к биологической реабилитации залива на основе контролируемо-
го внесения пресноводных зелёных микроводорослей Chlorella vulgaris, конкурирующих с цианобактериями за 
биогенные элементы. Цель исследования заключается в разработке и применении комплексной математической 
модели, описывающей кинетику фитопланктона и процессы переноса веществ в условиях осолонения залива, а 
также в оценке эколого-гигиенических и медицинских последствий предложенного метода.
Материалы и методы. Объектом исследования является Таганрогский залив Азовского моря. Моделирование 
выполнено на основе трёхмерной гидродинамической модели «Azov3D», ранее применённой для расчётов тече-
ний и вертикального перемешивания в условиях изменяющейся солёности. Параметры водной среды (солёность, 
температура, скорости течений) использовались как входные данные для решения линеаризованной гидроби-
ологической задачи. Источник батиметрических данных — оцифрованные лоцманские карты, обработанные с 
применением автоматизированных алгоритмов распознавания глубин. Сеточная основа модели формировалась с 
учётом реальной конфигурации береговой линии и рельефа дна. Расчёты выполнялись на вычислительном кла-
стере Южного федерального университета. Численный метод основан на разностных схемах, применяемых ранее 
для гидробиологических расчётов в Азовском море.
Результаты исследования. Показано, что увеличение солёности на 30 % приводит к смещению ареала циано-
бактерий из акватории Азовского моря в восточную часть Таганрогского залива, что согласуется с гидрологиче-
скими наблюдениями. Модельные расчёты демонстрируют усиление доли зелёных водорослей при контролиру-
емом внесении культур Chlorella vulgaris, что отражает потенциал биомелиорации. Прогноз пространственного 
распределения популяций показывает устойчивое доминирование зеленых и синезеленых водорослей, составля-
ющих 60–70 % биомассы фитопланктона залива, при различных сценариях воздействия.
Обсуждение. Результаты показывают, что математическое моделирование является эффективным инструментом 
для прогнозирования динамики фитопланктонных популяций в условиях изменяющейся гидрологии. Модель по-
зволяет оценить влияние биологической регуляции и сценариев осолонения, предоставляя основу для принятия 
управленческих решений в сфере экологического оздоровления водоёмов.
Заключение. Применение Chlorella vulgaris может быть перспективным методом биомелиорации, однако требует 
дальнейшей проверки с опорой на натурные наблюдения и контролируемые полевые эксперименты. Модельные 
результаты указывают на возможность адаптивного экологического управления Таганрогским заливом и мини-
мизации риска токсичных цветений.

Ключевые слова: динамика фитопланктона, Chlorella vulgaris, моделирование эвтрофикации, гидродинамиче-
ская модель, уравнения конвекции-диффузии, перенос веществ, цветение цианобактерий, численное моделиро-
вание, биологическая регуляция, Таганрогский залив
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Introduction. The Azov Sea, and particularly the Taganrog Bay, is among the most eutrophic and ecologically 
vulnerable water areas in Russia. The influx of nutrients from the Don River basin, high water temperatures in summer, 
and limited water exchange lead to the massive proliferation of cyanobacteria (Microcystis, Aphanizomenon, Anabaena, 
Nodularia) [1–3]. A number of cyanobacteria produce toxic metabolites—microcystins, nodularin, cylindrospermopsin, 
saxitoxin—which pose a threat to human health [4–8]. The blue-green (cyanobacterial) algae Microcystis aeruginosa, 
Aphanizomenon flos-aquae, and representatives of the genus Anabaena are the primary species forming massive “blooms” 
in the freshened zone of Taganrog Bay [9–12]. Upon the decay of these organisms, anatoxins a and a(s), which affect the 
nervous system, appear in the water. It was previously hypothesized that poisoning by decomposing cells of blue-green 
algae causes the so-called Haff disease [2].

Monitoring by the Southern Scientific Centre of the Russian Academy of Sciences indicates that peak phytoplankton 
concentrations, primarily cyanobacteria, in the Taganrog Bay reach levels classified by the WHO as posing a high risk 
to the population during swimming and water contact [2–4]. The concentration of toxic algae, primarily cyanotoxin 
producers, can be reduced through the spatially distributed introduction of biologically significant quantities of the green 
microalgae Chlorella vulgaris, which provides effective competition for nutrients. This paper presents a hydrobiological 
model and the results of numerical modelling of various scenarios for the spatial distribution of green algae to achieve 
acceptable ecological and hygienic outcomes through biological regulation of cyanobacterial abundance.

We present initial data illustrating the biological and ecological-hygienic characteristics of toxic microalgae species 
(hydrobiota) in the Taganrog Bay. According to long-term observations by the SSC RAS [2, 3], the background summer 
phytoplankton abundance ranges from 7.5–53 thousand cells/ml, reaching up to 152 thousand cells/ml during peak blooms (2015). 
The corresponding biomass is 23.8 g/m³ [2]; the maximum biomass over the long-term period is 70–80 g/m³ [3]; and the 
proportion of cyanobacteria in the biomass structure reaches 90% [2, 3]. Such concentrations correspond to harmful algal 
blooms (HABs) and, according to the WHO classification presented in Table 1, belong to levels at which adverse health 
effects for the population are possible [4].

Table 1 

Cyanobacterial Concentrations and WHO Risk Classification

Indicator Concentration Conditions Risk (WHO) Sources
Background Abundance 7.500–53.000 cells/ml Summer Low [2, 3]
Peak Bloom Abundance ≈152.000 cells/ml Taganrog Bay High (> 100.000) [2]
Biomass (background) 0.9–5.5 g/m³ Summer Low [2]
Biomass (bloom) 23.8 g/m³ Bloom Moderate–High [2]
Long-term Maximum 
Biomass

70–80 g/m³ Azov Sea HAB (Harmful Algal 
Bloom)

[3]

Microcystin-LR (Drinking 
Water MPC)

1 μg/L Water Acceptable [4, 5]

Microcystin-LR (Recreational 
Water)

> 20 μg/L Bathing Hazardous [4]

(MPC – Maximum Permissible Concentration)

Currently, the following pathways of cyanotoxin impact on humans are known: dermal contact (cutaneous pathway), 
inhalation, hemodialysis, and ingestion (oral pathway). When distinguishing these pathways, it should be noted that 
several routes of exposure can act simultaneously on a person. Cases of skin irritation and allergic reactions following 
contact with cyanobacteria in marine coastal waters have been recorded for at least 30 years. Symptoms have included 
rashes, blisters, allergic reactions resembling hay fever, asthma, conjunctivitis, and irritation of the ears and eyes. In eighty-
five percent of patients, following initial neurotoxicosis, toxic symptoms developed, including painful hepatomegaly, 
as well as biochemical and histological signs of liver damage. Sixty fatalities were reported, caused either directly by 
hepatotoxicity or indirectly by complications including gastrointestinal bleeding, sepsis, and cardiovascular problems [8].
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A study by A.Yu. Zhidkova et al. showed that an increase in the level of eutrophication in the Taganrog Bay is accompanied 
by a rise in gastrointestinal diseases, skin conditions, and allergic reactions among the population of coastal areas [1]. The 
authors note a direct link between the deterioration of water quality and the dynamics of visits to healthcare institutions.

An increase in acute allergic and toxic reactions during swimming should also be noted. At cyanobacterial 
concentrations exceeding 20–100 thousand cells/ml (levels typical for the Taganrog Bay in summer), the following are 
possible: skin itching, dermatitis, rashes, conjunctivitis, rhinitis, cough, throat irritation, asthma exacerbation, nausea, 
vomiting, and diarrhea from accidental water ingestion.

These effects are described in reports by the WHO and EPA [4, 7, 8] and are supported by statistically robust data for 
the region adjacent to the Azov Sea coast [1, 2]. Particular attention is drawn to cases of severe and acute intoxications, 
including those leading to hepatotoxic effects (microcystin, nodularin). Confirmed cases of consequences, including acute 
toxic hepatitis, a sharp increase in transaminase, damage to liver vessels, hemorrhagic necrosis, and others, are detailed in 
works [4, 6, 8]. To ensure the integrity of the analysis, both acute neurotoxic effects (saxitoxin, anatoxin) and hepato- and 
nephrotoxic effects, as well as long-term chronic consequences of cyanotoxin exposure, including potential carcinogenic 
risks, have been considered. Summary data on cyanobacterial and cyanotoxin concentrations, the nature of toxic action, 
and possible clinical manifestations are presented in Table 2.

Thus, harmful cyanobacterial blooms pose a significant threat to the health of the Azov region›s population and 
require systematic monitoring and prevention. Mathematical modelling is a relatively inexpensive, rapid, and accessible 
method for forecasting adverse situations associated with abundant cyanobacterial blooms in summer.

A number of domestic and international publications are devoted to modelling blooms of potentially harmful 
cyanobacteria. In [13], the influence of phosphorus on stimulating the development of blue-green algae is investigated. 
The article [14] presented a non-stationary three-component mathematical model of competition between two types of 
phytoplankton, including toxic ones, and their grazing by zooplankton.

Table 2 

Cyanobacteria and Cyanotoxin Concentrations, Types of Exposure, and Possible Clinical Manifestations in Humans

Cyanobacteria Concentration / 
Toxin Level

Exposure Type Clinical Manifestations Sources

7.5–53 thousand cells/ml Contact Mild skin reactions [2, 3]
~152 thousand cells/ml Bathing Rash, itching, gastrointestinal 

disorders
[1, 2, 4]

20–80 g/m³ biomass Repeated contact Diarrhea, vomiting, dermatitis [3, 4]
Microcystin-LR ≥ 1 μg/L Drinking water Hepatotoxicity [4, 5, 6]
Microcystin-LR ≥ 20 µg/L Bathing Acute intoxication [4]
Saxitoxin > 3 µg/L Ingestion via water/fish Neurotoxic symptoms, paralysis [7]
Cylindrospermopsin ~1 µg/L Contact, water Hepato- and nephrotoxicity [9]
Chronic low doses Long-term residence Increased risk of oncological and 

chronic diseases
[1, 8]

One of the methods for limiting mass cyanobacterial blooms is the biological regulation (biomelioration) of water 
bodies through the controlled introduction of cultures of the green microalgae Chlorella vulgaris [15]. The essence of 
the method is that green algae are introduced into the water body before the beginning of the blue-green algae growing 
season, where they absorb most of the nutrients, thereby limiting or even stopping the reproduction and growth of harmful 
cyanobacteria. In turn, green microalgae serve as a food base for zooplankton and juvenile fish, contributing to the 
stabilization of the water body›s trophic structure [16]. At typical concentrations, no negative impact of green algae 
on the aquatic ecosystem or harmful effects on human health have been detected. Furthermore, green algae have found 
application in agriculture as fertilizers, feed additives for livestock, and for wastewater treatment [17].

However, it is important to distinguish between the controlled introduction of Chlorella vulgaris cultures for 
biomelioration and the uncontrolled mass development of green algae. The latter can deteriorate the organoleptic 
properties of water, increase the concentration of dissolved organic matter, and promote bacterial contamination, which 
in turn leads to an increase in the formation of disinfection by-products during chlorination [5–7, 9]. These effects are not 
attributable to biomelioration biotechnology but to spontaneous green algal blooms under conditions of nutrient excess.

Given the pronounced eutrophication of the Azov Sea coastal waters, the use of green microalgae Chlorella vulgaris 
as a biological regulator of cyanobacterial abundance is of particular interest. Results from laboratory and semi-
field experiments show that during co-cultivation of Chlorella vulgaris and toxic species (Microcystis aeruginosa, 
Aphanizomenon flos-aquae, Anabaena spp.), pronounced competition for available forms of nitrogen and phosphorus is 
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observed, leading to a reduction in cyanobacterial growth rates and partial cell death within several weeks of the growing 
season. These data allow the consideration of controlled green microalgae introduction as a potential tool for biological 
regulation, the effectiveness of which is largely determined by the spatial distribution of biomass, initial phytoplankton 
concentrations, and the level of nutrient loading [18, 19].

In view of the above, the mathematical modelling of biological water body rehabilitation is a relevant task and is of 
interest from the perspective of regulating blue-green algae abundance under conditions of their geographically distributed 
introduction into the aquatic environment of the Taganrog Bay. The aim of this work is to conduct mathematical modelling 
of the remediation of the Taganrog Bay through the introduction of green microalgae and to assess the ecological-hygienic 
and medical consequences.

To achieve this aim, the authors of this study propose using a complex of mathematical models of phytoplankton 
population dynamics and hydrodynamics, accounting for advective and diffusive transport, weather conditions, geometry 
of the computational domain, growth limitation of microalgae by nutrient availability, and salinity and temperature 
regimes [20]. Modern finite-difference schemes and numerical methods were used to solve the stated problem.

Materials and Methods. The mathematical model of biological kinetics is based on the works of A.I. Sukhinov and 
E.V. Yakushev [21, 22]. The mathematical model, the nonlinear right-hand sides of the equations, and the formulation 
of the initial boundary value problem are described in detail in [22]. A brief description of the mathematical model and 
its linearization are provided below.

This model is based on a system of unsteady convection-diffusion-reaction equations of parabolic type with nonlinear 
source functions and first-order derivatives. Advective terms are presented in symmetric form, which guarantees the 
skew-symmetry of the transport operator and enables a correct problem formulation. For each substance Fi, included in 
the model, the equation has the form:

 ( ) ( )( ) ( )1 div ,
2 i

i
i i i q

q q q k q R
t

∂
+ ∇ ⋅ + ⋅∇ = ⋅∇ +

∂
V V

where qi is the concentration of the i-th ( 1,8i = ) component, mg/L; V = {u, v, w} is the water flow velocity vector, m/s;    
k = (kh, kh, kv) is the turbulent exchange coefficient, m²/s; ∇ denotes the gradient operator;  (x, y, z) ∈ G; 0 < t ≤ T; Rqi is 
the source function of biogenic substances, mg/(L·s); i ∈ M, M = {F1, F2, DOP, POP, PO4, NO3, NO2, NH4}; F1 denotes 
the concentration of green algae, F2 — blue-green algae. The following biogenic components are specified: DOP refers 
to dissolved organic phosphorus, POP — suspended organic phosphorus, PO4 — phosphates, NO3 — nitrates, NO2 — 
nitrites, NH4 — ammonium (ammonium nitrogen). 

The biochemical interactions between the components of system (1), i. e., the right-hand side functions Rqi = Rqi(x, y, z, t),  
are, in general, nonlinear dependencies that may depend on the temperature and salinity of the aquatic environment. They 
have the following form:

 (1 ) ,  1,2,
i i i i i i i iF F F R F F D F F E FR C K q K q K q i= − − − =

 3

1
,

i iDOP P F E F PD POP DN DOP
i

R s K q K q K q
=

= + −∑

 3

1
,

i iPOP P F D F PD POP PN POP
i

R s K q K q K q
=

= − −∑

 ( )4

3

1
1 ,

i i iPO P F F R F PN POP DN DOP
i

R s C K q K q K q
=

= − + +∑

 
( )

( ) ( )
( )

3 2 4 3

3 2

2 33 2 4

13

23
1

,
1 ,

i i i

N NO NO NH NO
NO N F F R F NO

i NO NON NO NO NH

f q ,q q q
R s C K q K q

q qf q ,q ,q=

= − ⋅ +
+∑

 ( ) ( )
( )

3 2 4 2

2 4 2

2 33 2 4

13

42 23
1

,
( 1) ,

i i i

N NO NO NH NO
NO N F F R F NH NO

i NO NON NO NO NH

f q ,q q q
R s C K q K q K q

q qf q ,q ,q=

= − ⋅ + −
+∑

 
( )

( ) ( )
( ) ( )4

4 4

3 2 4

23 3

42
1 1

1 ,
i i i i i i

N NH
NH N F F R F N F D F E F NH

i iN NO NO NH

f q
R s C K q s K K q K q

f q ,q ,q= =

= − + + −∑ ∑

where  
iF RK  is the specific respiration rate of phytoplankton;  

iF DK  is the specific mortality rate of phytoplankton;  
iF EK  

is the specific excretion rate of phytoplankton; KPD  is the specific rate of POP autolysis; KPN is the specific rate of POP 
phosphatefication; KDN is the specific rate of DOP phosphatefication; K42 is the specific rate of ammonium oxidation to 

(1)

(2)
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nitrites during nitrification; K23 is the specific rate of nitrite oxidation to nitrates during nitrification; SP, SN  are normalization 
coefficients for the content of N and P in organic matter. The growth rate of phytoplankton populations is expressed as a 
function dependent on salinity S and temperature T:

 ( ) ( ) ( ) ( ){ }1,2 1,2 4 3 2 4
,F NF T S P PO N NO NO NHC  = K f T f S min f q , f q ,q ,q

where KNF  is the maximum specific growth rate of phytoplankton. 
The growth of microalgae also depends on the concentration of main nutrients — nitrogen compounds (nitrates, 

nitrites, ammonia) and phosphorus (phosphates, dissolved organic phosphorus, suspended organic phosphorus). The 
functional dependencies for these are written in the Michaelis-Menten form. All these factors are limiting, and their 
influence reflects Liebig’s law.

The functional dependencies on abiotic factors are expressed by the following formulas: 

 ( ) ( ){ }( )2
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where ks = 1; Topt, Sopt  are the optimal salinity and temperature for the given aquatic species; ai > 0, bi > 0; i = 1,2  
are coefficients characterizing the width of the tolerance range of the aquatic organisms to salinity and temperature, 
respectively.

For system (1), an initial boundary value problem is formulated with the addition of appropriate initial and boundary 
conditions. The initial conditions for system (1) have the form:

 ( ) ( ) ( )0, , ,0 , , ,  ,  0,  , , ,i iq x y z q x y z i M t x y z G= ∈ = ∈
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where G  is the computational domain of the enclosed water body, bounded by the lateral surface (cylindrical surface) σ, 
the bottom  ( ),H H x y∂Σ = ∂Σ   and ∑0 — the undisturbed free water surface; ∑ is the piecewise smooth boundary of G, 
defined for 0 < t ≤ T at  0 HΣ = Σ ∪Σ ∪σ.

Taking into account the introduced notations, the boundary conditions for equation (1) are formulated as follows on σ:
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where εi are non-negative constants, i ∈ M; εi account for the sedimentation of algae to the bottom, their sinking, and the 
uptake of nutrients by bottom sediments for i ∈ {F1, F2}.

On a uniform temporal grid ωτ = {tn = nτ, n = 0,1..., N; Nτ = T} within the interval 0 < t ≤ T the nonlinearity of the 
right-hand side functions of the initial boundary value problem system (1)–(4) was linearized for the continuous model. 
Solutions of the linearized problem will be denoted as functions of the form  n

iq∼ , n = 1,2..., N taking into account the initial 
and boundary conditions. The linearization involves specifying the concentration functions of the substances appearing in 
the right-hand sides of the equations from the previous time layer tn−1. If n = 1, the known initial conditions (3) are used. 

Let us formulate the non-linearized (original) system (1) as a chain of coupled initial-boundary value problems of the form:

 ( )( ) ( )1 div div div grad ,
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where i ∈ M, (x, y, z) ∈ G, n = 1,2..., N, tn−1 < t ≤ tn, t ∈ ωτ = {tn = nτ, n = ,2..., N} with initial and boundary conditions 
considered on the interval tn−1 < t ≤ tn for each of the equations.

(3)

(5)

(4)
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Linearization involves specifying the concentration functions of the substances appearing in the right-hand sides of 
the equations from the previous, relative to the current, time layer:
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by hydrophysical and biogeochemical constraints. Inequalities have been obtained that guarantee the closeness of the 
solutions of the linearized and nonlinear problems for each substance Fi in L2(G) on a sequence of grids ωτ at τ → 0:

...

 ( )
( )2

1

1 1
1,2, ,

0

, , , .
L G

n
n

n N
C const

z x y z t C
=

≡ >

≤ τ

The presented mathematical model requires input data with initial values for the concentrations of the studied 
substances, salinity, temperature, water flow velocities, etc. In 2022–2024, researchers from the Azov-Black Sea Branch 
of FSBSI “VNIRO” — “AzNIIRKH” investigated the hydrobiological characteristics of the Azov Sea, particularly water 
salinity and temperature. Values of salinity at the points of the hydrobiological survey grid are presented in [11]. Field 
measurement data are consistent with the assumption of the authors of this article regarding a 30% increase in the salinity 
of the Azov Sea, specifically in the Taganrog Bay, relative to normal values for the water body, as reflected in [10]. A 
forecast of the development of the main phytoplankton population species during summer under various salinization 
scenarios for the Azov Sea was also made.

As a result of the salinization of the Azov Sea, the habitat of blue-green algae has shifted to the eastern part of the 
Taganrog Bay, while they are almost absent in the main part of the sea, which is confirmed by data from “AzNIIRKH” [10].

Taking into account the above, it can be assumed that the obtained phytoplankton population habitats under salinity 
values increased by 30% from normal can be used as initial distributions of phytoplankton population concentrations for 
conducting a computational experiment on the biological rehabilitation of the water body. The forecast of the geographical 
position of phytoplankton populations shown in Fig. 1 reflects the ratio of green and blue-green algae, whose biomass in 
the Taganrog Bay constitutes 60–70% of the total phytoplankton biomass [3].

Fig. 1. Phytoplankton population habitats in summer:
a — green algae; b — blue-green algae

At the beginning of the growing season, nutrients are abundant, entering the Taganrog Bay with the runoff of the 
Don River during winter. At the start of the experiment, the distributions of major nutrients are set as uniform. The 
phosphate concentration is 0.04 mg/L, and the nitrate concentration is 0.204 mg/L. According to data from “AzNIIRKH” [10], 
the average phytoplankton biomass concentration in the Taganrog Bay is 1 mg/L, with cyanobacteria accounting for 
70% of the biomass. The habitats of the initial phytoplankton population distributions are shown in Fig. 1, with the 
maximum concentration of green algae being 0.1 mg/L and that of cyanobacteria 0.7 mg/L. For the experiment, the 
optimal temperature for green algae is set at 25 °C, and for blue-green algae at 28 °C. The distributions of salinity and 
temperature values input into the software module for modelling the biological rehabilitation of the water body are 
shown in Fig. 2 [23].

When solving the linearized problem (1)–(10), the input data include the com-ponents of the water flow velocity vector 
at the nodes of the hydrodynamic com-putational grid, calculated based on the 3D hydrodynamic model implemented in 
the “Azov3D” software suite [24], as well as the values of salinity S0, temperature T0 and calculated concentrations q0i at 
the time t0. The boundaries of the computational domain were determined using depth values obtained from pro-cessing 
navigational charts [25].
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Fig. 2. Initial data. Distributions of values:
a — salinity; b — temperature

The numerical solution of the problem involves constructing a discrete model (finite-difference scheme) using the 
input data and applying a numerical method for solving the grid equations. The modelling domain is assumed to be 
inscribed in a three-dimensional stepped region and is covered by a computational grid ωτ×ωh, uniform in time and the 
three spatial directions:

ωτ = {tn = nτ, n = 0,1..., N, Nτ = T},

ωh = {xj = j ‧ hx, yk = k ‧ hy, zl = l ‧ hz; j = 0,1..., Nx, k = 0,1..., Ny, l = 0,1..., Nz},

where τ is the time step; 0 ≤ t ≤ T is the time interval; hx , hy , hz are the steps in the spatial directions Ox, Oy, and Oz, 
respectively; Nx , Ny , Nz are the maximum number of grid nodes in each spatial direction; Lx , Ly , Lz are the maximum 
dimensions of the computational domain in space. 

The linearization discussed above allows obtaining a system of linear grid equations. The discretization of problem (1), based 
on the system of convection-diffusion-reaction equations, is carried out using implicit monotonic schemes constructed on 
hydrodynamic grids.

The biological rehabilitation experiment proceeds as follows: a suspension of green algae is introduced at the beginning 
of their growing season, i. e., in March–April. By the start of the blue-green algae growing season (in May–June), the 
green algae have consumed most of the nutrients, leaving insufficient amounts for a massive bloom of blue-green algae.

The chlorella suspension is best introduced into areas of the water body with the highest convection, such as river 
channels, tips of spits, etc. The water flow velocity values were obtained from the “Azov3D” software suite, which 
implements a three-dimensional unsteady mathematical model of hydrodynamics. In the Azov Sea, easterly and 
northeasterly winds prevail from October to April. Such directions are formed under the influence of a spur of the Siberian 
anticyclone [26]. Therefore, the flow pattern obtained under an easterly wind direction was chosen as input data for 
conducting a computational experiment on the biological rehabilitation of the Taganrog Bay under conditions of increased 
salinity. The flow pattern in the Azov Sea under an easterly wind speed of 5 m/s is shown in Fig. 3. Red dots mark 
the locations of suspension introduction. The selection of points considered the flow velocities, the fact that Chlorella 
vulgaris is a freshwater alga, and the accessibility for introducing the suspension from the shore. The concentration of 
Chlorella vulgaris in the suspension is 1167 mg/L, the release rate is 5 L/s, with a total of 25 tons released, 2.5 tons at 
each of the 10 release points.

Fig. 3. Flow pattern in the Azov Sea under an easterly wind of 5 m/s

Results. As part of this study, modelling of the biological rehabilitation of the Taganrog Bay under conditions of 
salinization, based on the introduction of green microalgae, was conducted. As a result of the computational experiment, 
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the authors obtained distributions of green algae and blue-green algae concentrations at time intervals of 15 days (Fig. 4) 
and 30 days (Fig. 5) for a Chlorella vulgaris suspension concentration of 1167 mg/L and a total volume of 25 tons.

Fig. 4. Concentration distributions 15 days 
after introducing the Chlorella vulgaris suspension (concentration 1167 mg/L):

a — green algae; b — blue-green algae

Fig. 5. Concentration distributions 30 days 
after introducing the Chlorella vulgaris suspension (concentration 1167 mg/L):

a — green algae; b — blue-green algae

Fig. 6 shows the distributions of green algae and blue-green algae (surface layer) over a 30-day time interval for a 
Chlorella vulgaris suspension concentration of 2333 mg/L and a total volume of 25 tons.

Fig. 6. Concentration distributions 30 days 
after introducing the Chlorella vulgaris suspension (concentration 2333 mg/L):

a — green algae; b — blue-green algae

Fig. 4–6 depict the concentration values of the two microalgae species on the water surface.
Discussion. The concentration distributions of green and blue-green algae obtained from the modelling indicate the 

success of the computational experiment on the biological rehabilitation of the Taganrog Bay for the given concentration 
and volume of the introduced suspension. The experiment simulated the introduction of a Chlorella vulgaris phytoplankton 
suspension into the water body during the spring period, prior to the growing season of the potentially toxic blue-green 
algae Aphanizomenon flos-aquae. The introduction points were selected in the freshened zone (salinity values up to 7–8‰), 
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which allowed the freshwater green algae to survive and grow successfully. The green microalgae consumed phosphates 
(PO4) and nitrates (NH4), leading to a nutrient deficiency by the beginning of the blue-green algae growing season.

At the start of the experiment, the concentration of blue-green algae exceeded that of green algae (0.7 mg/L and 0.1 mg/L, 
respectively). After 15 days, the concentration of blue-green algae was 131 times lower than that of green algae (0.034 mg/L 
and 4.462 mg/L, respectively). After 30 days, the difference in concentrations increased further (1.349×10⁻³ mg/L and 
1.475 mg/L, respectively). Additionally, as shown in Fig. 6, doubling the concentration of the introduced green algae (to 
2333 mg/L while keeping the volume constant) resulted in a potentially hazardous Chlorella vulgaris concentration of 
9.267 mg/L after 30 days. Such a concentration of green algae, combined with other phytoplankton species, could lead to 
eutrophication of the water body and fish kills.

Furthermore, increasing the quantity of introduced green algae is costly and, therefore, economically unviable. 
The computational experiment empirically determined the optimal concentration and volume of the Chlorella vulgaris 
suspension to be introduced. It is important to note that the results of the computational experiment were obtained using 
reliable data on salinity, temperature, and the distributions of modeled substances, confirmed by field studies and long-
term observations.

From the perspective of assessing ecological-hygienic and medical consequences, the scenario where green algae 
concentration exceeds that of blue-green algae (Fig. 5) is favorable, and no significant negative impacts from blue-green 
algae on recreational conditions in the Taganrog Bay are expected. Moreover, the concentration of green algae does not 
exceed permissible limits and is considered acceptable.

Conclusion. The modelling results were obtained using modern and high-precision mathematical modelling methods. 
The study’s findings demonstrate the advantage of employing an integrated approach in mathematically modelling 
processes occurring in complex natural systems. These methods can be successfully used to simulate various scenarios 
for the development and rehabilitation of water bodies.

Despite the obtained results, the invasion of Chlorella into the ecosystem of the Taganrog Bay cannot be considered as 
the sole method for improving the ecological state of the water body. However, it can be an effective tool for water body 
rehabilitation when combined with other methods.
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