Моделирование капиллярного разряда в режиме повторения для коротких капиллярных систем при различных способах заполнения
https://doi.org/10.23947/2587-8999-2024-8-2-45-59
Аннотация
Введение. В настоящее время активно исследуются частотные режимы работы ускорителей электронов на основе капиллярных разрядов. Электроны в них ускоряются под действием лазерных импульсов фемтосекундного диапазона длительности, пропускаемых через плазму разряда.
Материалы и методы. В работе рассматриваются результаты трехмерного магнитогидродинамического моделирования цикла капиллярного разряда, включающего стадии заполнения короткого капилляра рабочим газом (водород), формирование плазменного канала, восстановление рабочей среды перед началом следующего разряда. Расчеты выполнены в предположении о том, что система находится под внешним охлаждением, которое обеспечивает температурный баланс на промежуточных этапах рабочего цикла, а также при постоянных условиях подачи и откачки рабочего газа.
Результаты исследования. Результаты вычислительных экспериментов показывают возможность генерации пучков релятивистских электронов с частотой повторения около одного килогерца.
Обсуждение и заключение. Полученные результаты позволяют говорить о перспективности использования КЛПУ с малой длиной канала и высокой частотой повторения капиллярного разряда.
Ключевые слова
Об авторах
В. А. ГасиловРоссия
Гасилов Владимир Анатольевич, главный научный сотрудник
125047, Москва, Миусская пл., 4
Н. О. Савенко
Россия
Савенко Никита Олегович, младший научный сотрудник
125047, Москва, Миусская пл., 4
Ю. С. Шарова
Россия
Шарова Юлия Сергеевна, младший научный сотрудник
125047, Москва, Миусская пл., 4
Список литературы
1. Tajima T., Dawson J.M. Laser Electron Accelerator. Phys. Rev. Lett. 1979;43:267. https://doi.org/10.1103/PhysRevLett.43.267
2. Molodozhentsev A., Korn G., Maier A., Pribyl L. LWFA-driven Free Electron Laser for ELI-Beamlines. ICFA Advanced Beam Dynamics Workshop on Future Light Sources. JACoW, Geneva. 2018;60:62–67. https://doi.org/10.18429/JACoW-FLS2018-TUA2WC02
3. Leemans W., Esarey E. Laser-driven plasma-wave electron accelerators. Phys. Today. 2009;62(3):44.
4. Schroeder C.B., Esarey E., Geddes C.G.R., Benedetti C., Leemans W.P. Physics considerations for laser-plasma linear colliders. Phys. Rev. Accel. Beams. 2010;13:101301. https://doi.org/10.1103/PhysRevSTAB.13.101301
5. Leemans W.P., Gonsalves A.J., Mao H.-S., Nakamura K., Benedetti C., Schroeder C.B., et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Phys. Rev. Lett. 2014;113:245002. https://doi.org/10.1103/PhysRevLett.113.245002
6. Gonsalves A.J., Nakamura K., Daniels J., Benedetti C., Pieronek C., de Raadt T.C.H., et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. https://doi.org/10.1103/PhysRevLett.122.084801
7. Esarey E., Schroeder C.B., Leemans W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229. https://doi.org/10.1103/RevModPhys.81.1229
8. Spence D.J., Hooker S.M. Investigation of a hydrogen plasma waveguide. Phys. Rev. E. 2001;63:015401(R). https://doi.org/10.1103/PhysRevE.63.015401
9. Bobrova N.A., Esaulov A.A., Sakai J.-I., Sasorov P.V., Spence D.J., Butler A., et al. Simulations of a hydrogenfilled capillary discharge waveguide. Phys. Rev. E. 2002;65:016407. https://doi.org/10.1103/PhysRevE.65.016407
10. Hosokai T., Kando M., Dewa H., Kotaki H., Kondo S., Hasegawa N., et al. Optical guidance of terrawatt laser pulses by the implosion phase of a fast z-pinch discharge in a gas-filled capillary. Opt. Lett. 2000;25:10–12. https://doi.org/10.1364/OL.25.000010
11. Kameshima T., Kotaki H., Kando M., Daito I., Kawase K., Fukuda Y., et al. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma. Phys. Plasmas. 2009;16:093101. https://doi.org/10.1063/1.3212589
12. Gonsalves A.J., Nakamura K., Lin C., Panasenko D., Shiraishi S., Sokollik T, et al. Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 2011;7:862–866. https://doi.org/10.1038/nphys2071
13. Pieronek C., Gonsalves A., Benedetti C., Bulanov S., van Tilborg J., Bin J., et al. Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. Phys. Plasmas. 2020;27:093101. https://doi.org/10.1063/5.0014961
14. Bobrova N.A., Sasorov P.V., Benedetti C., Bulanov S.S., Geddes C.G.R., Schroeder C.B., et al. Laserheater assisted plasma channel formationin capillary discharge waveguides. Phys. Plasmas. 2013;20:020703. https://doi.org/10.1063/1.4793447
15. Bagdasarov G.A., Bobrova N.A., Olkhovskaya O.G., Gasilov V.A., Benedetti C., Bulanov S.S., et al. Creation of axially uniform plasma channelin laser-assisted capillary discharge. Phys. Plasmas. 2021;28:053104. https://doi.org/10.1063/5.0046428
16. Gonsalves A.J., Liu F., Bobrova N.A., Sasorov P.V., Pieronek C., Daniels J, et al. Demonstration of a High Repetition Rate Capillary Discharge Waveguide. J. Appl. Phys. 2016;119:033302. https://doi.org/10.1063/1.4940121
17. Alejo A., Cowley J., Picksley A., Walczak R., Hooker S.M. Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels. Phys. Rev. Accel. Beams. 2022;25:011301. https://doi.org/10.1103/PhysRevAccelBeams.25.011301
18. D’Arcy R., Chappell J., Beinortaite J., Diederichs S., Boyle G., Foster B., et al. Recovery time of a plasmawakefield accelerator. Nature. 2022;603:58–62. https://doi.org/10.1038/s41586-021-04348-8
19. Bagdasarov G.A., Kruchinin K.O., Molodozhentsev A.Yu., Sasorov P.V., Bulanov S.V., Gasilov V.A. Discharge Plasma Formation in Square Capillary with Gas Supply Channels. Phys. Rev. Res. 2022;4:013063. https://doi.org/10.1103/PhysRevResearch.4.013063
20. Gasilov V.A., Boldarev A.S., Olkhovskaya O.G., Boykov D.S., Sharova Yu.S., Savenko N.O, et al. MARPLE: software for multiphysics modelling in continuous media. Numerical Methods and Programming. 2023;24(4):316–338. https://doi.org/10.26089/NumMet.v24r423
21. Sasorov P., Bagdasarov G., Bobrova N., Grittani G., Molodozhentsev A., Bulanov S.V. Capillary discharge in the high repetition rate regime. Physical Review Research. 2024;6:013290. https://doi.org/10.1103/PhysRevResearch.6.013290
22. Савенко Н.О. О разностной аппроксимации газодинамических потоков на свободной границе расчетной области. Препринты ИПМ им. М.В. Келдыша. 2023;51:28с. https://doi.org/10.20948/prepr-2023-51
23. Leemans W.P., Nagler B., Gonsalves A.J., Toth Cs., Nakamura K., Geddes C.G.R., et al. GeV electron beams from a centimeter-scale accelerator. Nature physics. 2006;2:696–699. https://doi.org/10.1063/1.2718524
24. Брагинский С.И., Леонтович М.А. (ред.). Явления переноса в плазме. В кн.: Вопросы теории плазмы. Выпуск 1. ГосАтомИздат. 1963 г. С. 183–272.
Рецензия
Для цитирования:
Гасилов В.А., Савенко Н.О., Шарова Ю.С. Моделирование капиллярного разряда в режиме повторения для коротких капиллярных систем при различных способах заполнения. Computational Mathematics and Information Technologies. 2024;8(2):45-59. https://doi.org/10.23947/2587-8999-2024-8-2-45-59
For citation:
Gasilov V.A., Savenko N.O., Sharova Yu.S. Modelling of Capillary Discharge in Repetition Mode for Short Capillary Systems with Various Filling Methods. Computational Mathematics and Information Technologies. 2024;8(2):45-59. https://doi.org/10.23947/2587-8999-2024-8-2-45-59