Preview

Computational Mathematics and Information Technologies

Advanced search

Modelling of Capillary Discharge in Repetition Mode for Short Capillary Systems with Various Filling Methods

https://doi.org/10.23947/2587-8999-2024-8-2-45-59

Abstract

Introduction. Currently, frequency modes of operation of electron accelerators based on capillary discharges are actively investigated. Electrons in these systems are accelerated by femtosecond laser pulses passing through the discharge plasma.
Materials and Methods. The paper presents results of three-dimensional magnetohydrodynamic modelling of the capillary discharge cycle, including stages of filling a short capillary with working gas (hydrogen), formation of the plasma channel, and restoration of the working medium before the start of the next discharge. Calculations were performed assuming the system is under external cooling, which maintains thermal balance at intermediate stages of the working cycle, and under constant conditions of gas supply and evacuation.
Results. The computational experiments demonstrate the capability of generating beams of relativistic electrons with a repetition frequency of approximately one kilohertz.
Discussion and Conclusions. The obtained results allow us to speak about the prospects of using LWFA with a short channel length and a high repetition rate of the capillary discharge.

About the Authors

V. A. Gasilov
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Russian Federation

Vladimir A. Gasilov, Principal Researcher

4, Miusskaya sq., Moscow, 125047



N. O. Savenko
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Russian Federation

Nikita O. Savenko, Junior Researcher

4, Miusskaya sq., Moscow, 125047



Yu. S. Sharova
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Russian Federation

Yulia S. Sharova, Junior Researcher

4, Miusskaya sq., Moscow, 125047



References

1. Tajima T., Dawson J.M. Laser Electron Accelerator. Phys. Rev. Lett. 1979;43:267. https://doi.org/10.1103/PhysRevLett.43.267

2. Molodozhentsev A., Korn G., Maier A., Pribyl L. LWFA-driven Free Electron Laser for ELI-Beamlines. ICFA Advanced Beam Dynamics Workshop on Future Light Sources. JACoW, Geneva. 2018;60:62–67. https://doi.org/10.18429/JACoW-FLS2018-TUA2WC02

3. Leemans W., Esarey E. Laser-driven plasma-wave electron accelerators. Phys. Today. 2009;62(3):44.

4. Schroeder C.B., Esarey E., Geddes C.G.R., Benedetti C., Leemans W.P. Physics considerations for laser-plasma linear colliders. Phys. Rev. Accel. Beams. 2010;13:101301. https://doi.org/10.1103/PhysRevSTAB.13.101301

5. Leemans W.P., Gonsalves A.J., Mao H.-S., Nakamura K., Benedetti C., Schroeder C.B., et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Phys. Rev. Lett. 2014;113:245002. https://doi.org/10.1103/PhysRevLett.113.245002

6. Gonsalves A.J., Nakamura K., Daniels J., Benedetti C., Pieronek C., de Raadt T.C.H., et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. https://doi.org/10.1103/PhysRevLett.122.084801

7. Esarey E., Schroeder C.B., Leemans W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229. https://doi.org/10.1103/RevModPhys.81.1229

8. Spence D.J., Hooker S.M. Investigation of a hydrogen plasma waveguide. Phys. Rev. E. 2001;63:015401(R). https://doi.org/10.1103/PhysRevE.63.015401

9. Bobrova N.A., Esaulov A.A., Sakai J.-I., Sasorov P.V., Spence D.J., Butler A., et al. Simulations of a hydrogenfilled capillary discharge waveguide. Phys. Rev. E. 2002;65:016407. https://doi.org/10.1103/PhysRevE.65.016407

10. Hosokai T., Kando M., Dewa H., Kotaki H., Kondo S., Hasegawa N., et al. Optical guidance of terrawatt laser pulses by the implosion phase of a fast z-pinch discharge in a gas-filled capillary. Opt. Lett. 2000;25:10–12. https://doi.org/10.1364/OL.25.000010

11. Kameshima T., Kotaki H., Kando M., Daito I., Kawase K., Fukuda Y., et al. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma. Phys. Plasmas. 2009;16:093101. https://doi.org/10.1063/1.3212589

12. Gonsalves A.J., Nakamura K., Lin C., Panasenko D., Shiraishi S., Sokollik T, et al. Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 2011;7:862–866. https://doi.org/10.1038/nphys2071

13. Pieronek C., Gonsalves A., Benedetti C., Bulanov S., van Tilborg J., Bin J., et al. Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. Phys. Plasmas. 2020;27:093101. https://doi.org/10.1063/5.0014961

14. Bobrova N.A., Sasorov P.V., Benedetti C., Bulanov S.S., Geddes C.G.R., Schroeder C.B., et al. Laserheater assisted plasma channel formationin capillary discharge waveguides. Phys. Plasmas. 2013;20:020703. https://doi.org/10.1063/1.4793447

15. Bagdasarov G.A., Bobrova N.A., Olkhovskaya O.G., Gasilov V.A., Benedetti C., Bulanov S.S., et al. Creation of axially uniform plasma channelin laser-assisted capillary discharge. Phys. Plasmas. 2021;28:053104. https://doi.org/10.1063/5.0046428

16. Gonsalves A.J., Liu F., Bobrova N.A., Sasorov P.V., Pieronek C., Daniels J, et al. Demonstration of a High Repetition Rate Capillary Discharge Waveguide. J. Appl. Phys. 2016;119:033302. https://doi.org/10.1063/1.4940121

17. Alejo A., Cowley J., Picksley A., Walczak R., Hooker S.M. Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels. Phys. Rev. Accel. Beams. 2022;25:011301. https://doi.org/10.1103/PhysRevAccelBeams.25.011301

18. D’Arcy R., Chappell J., Beinortaite J., Diederichs S., Boyle G., Foster B., et al. Recovery time of a plasmawakefield accelerator. Nature. 2022;603:58–62. https://doi.org/10.1038/s41586-021-04348-8

19. Bagdasarov G.A., Kruchinin K.O., Molodozhentsev A.Yu., Sasorov P.V., Bulanov S.V., Gasilov V.A. Discharge Plasma Formation in Square Capillary with Gas Supply Channels. Phys. Rev. Res. 2022;4:013063. https://doi.org/10.1103/PhysRevResearch.4.013063

20. Gasilov V.A., Boldarev A.S., Olkhovskaya O.G., Boykov D.S., Sharova Yu.S., Savenko N.O, et al. MARPLE: software for multiphysics modelling in continuous media. Numerical Methods and Programming. 2023;24(4):316–338. https://doi.org/10.26089/NumMet.v24r423

21. Sasorov P., Bagdasarov G., Bobrova N., Grittani G., Molodozhentsev A., Bulanov S.V. Capillary discharge in the high repetition rate regime. Physical Review Research. 2024;6:013290. https://doi.org/10.1103/PhysRevResearch.6.013290

22. Savenko N.O. On the difference approximation of gasdynamic flows on the free boundary of the computational domain. Preprints of the Institute of Applied Mathematics named after M.V. Keldysh. 2023;51:28. (in Russ.). https://doi.org/10.20948/prepr-2023-51

23. Leemans W.P., Nagler B., Gonsalves A.J., Toth Cs., Nakamura K., Geddes C.G.R., et al. GeV electron beams from a centimeter-scale accelerator. Nature physics. 2006;2:696–699. https://doi.org/10.1063/1.2718524

24. Braginsky S.I., Leontovich M.A. (eds). Phenomena of transport in plasma. In: Questions of plasma theory. Issue 1. GosAtomIzdat. 1963. P. 183–272. (in Russ.).


Review

For citations:


Gasilov V.A., Savenko N.O., Sharova Yu.S. Modelling of Capillary Discharge in Repetition Mode for Short Capillary Systems with Various Filling Methods. Computational Mathematics and Information Technologies. 2024;8(2):45-59. https://doi.org/10.23947/2587-8999-2024-8-2-45-59

Views: 347


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)