Modelling of Capillary Discharge in Repetition Mode for Short Capillary Systems with Various Filling Methods
https://doi.org/10.23947/2587-8999-2024-8-2-45-59
Abstract
Introduction. Currently, frequency modes of operation of electron accelerators based on capillary discharges are actively investigated. Electrons in these systems are accelerated by femtosecond laser pulses passing through the discharge plasma.
Materials and Methods. The paper presents results of three-dimensional magnetohydrodynamic modelling of the capillary discharge cycle, including stages of filling a short capillary with working gas (hydrogen), formation of the plasma channel, and restoration of the working medium before the start of the next discharge. Calculations were performed assuming the system is under external cooling, which maintains thermal balance at intermediate stages of the working cycle, and under constant conditions of gas supply and evacuation.
Results. The computational experiments demonstrate the capability of generating beams of relativistic electrons with a repetition frequency of approximately one kilohertz.
Discussion and Conclusions. The obtained results allow us to speak about the prospects of using LWFA with a short channel length and a high repetition rate of the capillary discharge.
Keywords
About the Authors
V. A. GasilovRussian Federation
Vladimir A. Gasilov, Principal Researcher
4, Miusskaya sq., Moscow, 125047
N. O. Savenko
Russian Federation
Nikita O. Savenko, Junior Researcher
4, Miusskaya sq., Moscow, 125047
Yu. S. Sharova
Russian Federation
Yulia S. Sharova, Junior Researcher
4, Miusskaya sq., Moscow, 125047
References
1. Tajima T., Dawson J.M. Laser Electron Accelerator. Phys. Rev. Lett. 1979;43:267. https://doi.org/10.1103/PhysRevLett.43.267
2. Molodozhentsev A., Korn G., Maier A., Pribyl L. LWFA-driven Free Electron Laser for ELI-Beamlines. ICFA Advanced Beam Dynamics Workshop on Future Light Sources. JACoW, Geneva. 2018;60:62–67. https://doi.org/10.18429/JACoW-FLS2018-TUA2WC02
3. Leemans W., Esarey E. Laser-driven plasma-wave electron accelerators. Phys. Today. 2009;62(3):44.
4. Schroeder C.B., Esarey E., Geddes C.G.R., Benedetti C., Leemans W.P. Physics considerations for laser-plasma linear colliders. Phys. Rev. Accel. Beams. 2010;13:101301. https://doi.org/10.1103/PhysRevSTAB.13.101301
5. Leemans W.P., Gonsalves A.J., Mao H.-S., Nakamura K., Benedetti C., Schroeder C.B., et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Phys. Rev. Lett. 2014;113:245002. https://doi.org/10.1103/PhysRevLett.113.245002
6. Gonsalves A.J., Nakamura K., Daniels J., Benedetti C., Pieronek C., de Raadt T.C.H., et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. https://doi.org/10.1103/PhysRevLett.122.084801
7. Esarey E., Schroeder C.B., Leemans W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229. https://doi.org/10.1103/RevModPhys.81.1229
8. Spence D.J., Hooker S.M. Investigation of a hydrogen plasma waveguide. Phys. Rev. E. 2001;63:015401(R). https://doi.org/10.1103/PhysRevE.63.015401
9. Bobrova N.A., Esaulov A.A., Sakai J.-I., Sasorov P.V., Spence D.J., Butler A., et al. Simulations of a hydrogenfilled capillary discharge waveguide. Phys. Rev. E. 2002;65:016407. https://doi.org/10.1103/PhysRevE.65.016407
10. Hosokai T., Kando M., Dewa H., Kotaki H., Kondo S., Hasegawa N., et al. Optical guidance of terrawatt laser pulses by the implosion phase of a fast z-pinch discharge in a gas-filled capillary. Opt. Lett. 2000;25:10–12. https://doi.org/10.1364/OL.25.000010
11. Kameshima T., Kotaki H., Kando M., Daito I., Kawase K., Fukuda Y., et al. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma. Phys. Plasmas. 2009;16:093101. https://doi.org/10.1063/1.3212589
12. Gonsalves A.J., Nakamura K., Lin C., Panasenko D., Shiraishi S., Sokollik T, et al. Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 2011;7:862–866. https://doi.org/10.1038/nphys2071
13. Pieronek C., Gonsalves A., Benedetti C., Bulanov S., van Tilborg J., Bin J., et al. Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. Phys. Plasmas. 2020;27:093101. https://doi.org/10.1063/5.0014961
14. Bobrova N.A., Sasorov P.V., Benedetti C., Bulanov S.S., Geddes C.G.R., Schroeder C.B., et al. Laserheater assisted plasma channel formationin capillary discharge waveguides. Phys. Plasmas. 2013;20:020703. https://doi.org/10.1063/1.4793447
15. Bagdasarov G.A., Bobrova N.A., Olkhovskaya O.G., Gasilov V.A., Benedetti C., Bulanov S.S., et al. Creation of axially uniform plasma channelin laser-assisted capillary discharge. Phys. Plasmas. 2021;28:053104. https://doi.org/10.1063/5.0046428
16. Gonsalves A.J., Liu F., Bobrova N.A., Sasorov P.V., Pieronek C., Daniels J, et al. Demonstration of a High Repetition Rate Capillary Discharge Waveguide. J. Appl. Phys. 2016;119:033302. https://doi.org/10.1063/1.4940121
17. Alejo A., Cowley J., Picksley A., Walczak R., Hooker S.M. Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels. Phys. Rev. Accel. Beams. 2022;25:011301. https://doi.org/10.1103/PhysRevAccelBeams.25.011301
18. D’Arcy R., Chappell J., Beinortaite J., Diederichs S., Boyle G., Foster B., et al. Recovery time of a plasmawakefield accelerator. Nature. 2022;603:58–62. https://doi.org/10.1038/s41586-021-04348-8
19. Bagdasarov G.A., Kruchinin K.O., Molodozhentsev A.Yu., Sasorov P.V., Bulanov S.V., Gasilov V.A. Discharge Plasma Formation in Square Capillary with Gas Supply Channels. Phys. Rev. Res. 2022;4:013063. https://doi.org/10.1103/PhysRevResearch.4.013063
20. Gasilov V.A., Boldarev A.S., Olkhovskaya O.G., Boykov D.S., Sharova Yu.S., Savenko N.O, et al. MARPLE: software for multiphysics modelling in continuous media. Numerical Methods and Programming. 2023;24(4):316–338. https://doi.org/10.26089/NumMet.v24r423
21. Sasorov P., Bagdasarov G., Bobrova N., Grittani G., Molodozhentsev A., Bulanov S.V. Capillary discharge in the high repetition rate regime. Physical Review Research. 2024;6:013290. https://doi.org/10.1103/PhysRevResearch.6.013290
22. Savenko N.O. On the difference approximation of gasdynamic flows on the free boundary of the computational domain. Preprints of the Institute of Applied Mathematics named after M.V. Keldysh. 2023;51:28. (in Russ.). https://doi.org/10.20948/prepr-2023-51
23. Leemans W.P., Nagler B., Gonsalves A.J., Toth Cs., Nakamura K., Geddes C.G.R., et al. GeV electron beams from a centimeter-scale accelerator. Nature physics. 2006;2:696–699. https://doi.org/10.1063/1.2718524
24. Braginsky S.I., Leontovich M.A. (eds). Phenomena of transport in plasma. In: Questions of plasma theory. Issue 1. GosAtomIzdat. 1963. P. 183–272. (in Russ.).
Review
For citations:
Gasilov V.A., Savenko N.O., Sharova Yu.S. Modelling of Capillary Discharge in Repetition Mode for Short Capillary Systems with Various Filling Methods. Computational Mathematics and Information Technologies. 2024;8(2):45-59. https://doi.org/10.23947/2587-8999-2024-8-2-45-59