Preview

Computational Mathematics and Information Technologies

Advanced search

INFLUENCE OF SPACE CHARGE BREAKDOWN ON THE PERFORMANCE OF ELECTROMEMBRANE SYSTEMS

https://doi.org/10.23947/2587-8999-2022-1-2-81-95

Abstract

The article provides an overview of methods for solving problems of forecasting time series and modeling of complex systems using fuzzy cognitive maps (FCM). The main algorithms used in solving practical problems for complex semi-structured systems are listed, which make it possible to improve the accuracy and reliability of simulation results. For completeness of the review, publications of Russian and foreign researchers working in this area have been studied and described. In addition, the main software tools that implement the existing algorithms were listed and their distinctive features for solving various classes of problems were given. This comparison of software packages allows users to deter-mine the optimal system for further theoretical or practical research.

About the Authors

A. V. Petukhova
Universidade Lusófona de Humanidades e Tecnologias
Portugal

Alina V. Petukhova, Senior engineer, JohnSnowLabs

Lisbon, 1749-024,

Stavropolskaya st., 149, Krasnodar

 



A. V. Kovalenko
Kuban State University
Russian Federation

Anna V. Kovalenko, Dr.Sci. (Eng.), associate professor, Head of the Department of Data Analysis and Artificial Intelligence

Stavropolskaya st., 149, Krasnodar



References

1. B. Kosko, Fuzzy cognitive maps, Int. J. Man-Mach. Stud. (1986), 24 (1), pp. 65–75.

2. Felix Benjamín, Gerardo & Nápoles, Gonzalo & Falcon, Rafael & Froelich, Wojciech & Vanhoof, Koen & Bello, Rafael. (2019). A Review on Methods and Software for Fuzzy Cognitive Maps. Artificial Intelligence Review. 52.

3. Kulinich Alexander Alekseevich. «Computer systems for modeling cognitive maps: approaches and methods» Problems of Management, 2010, № 3, pp. 2-16.

4. Homenda, Wladyslaw & Jastrzebska, Agnieszka & Pedrycz, Witold. (2014). Joining Concept’s Based Fuzzy Cognitive Map Model with Moving Win-dow Technique for Time Series Modeling. 397-408. doi: 10.1007/978-3-662-45237-0_37.

5. Wei Lu, Jianhua Yang, Xiaodong Liu, Witold Pedrycz, The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy c-means clustering, Knowledge-Based Systems, 2014, V. 70, pp. 242- 255, doi: 10.1016/j.knosys.2014.07.004.

6. Homenda, Wladyslaw & Jastrzebska, Agnieszka & Pedrycz, Witold. Time Series Modeling with Fuzzy Cognitive Maps: Simplification Strategies, 2014, pp. 409-420. doi: 10.1007/978-3-662-45237-0_38.

7. Jose L. Salmeron and Wojciech Froelich. Dynamic optimization of fuzzy cognitive maps for time series forecasting. Know. -Based Syst. 105, 2016, pp. 29-37. doi: 10.1016/j.knosys.2016.04.023.

8. W. Stach, L.A. Kurgan, W. Pedrycz, Numerical and linguistic predic-tion of time series with the use of fuzzy cognitive maps, IEEE Trans. Fuzzy Syst., 2008, 16 (1), pp. 61-72. doi: 10.1109/TFUZZ.2007.902020.

9. Wojciech, Froelich & Juszczuk, Przemysław., Predictive Capabilities of Adaptive and Evolutionary Fuzzy Cognitive Maps - A Comparative Study., 2009, doi: 10.1007/978-3-642-04170-9_7.

10. Song, Hengjie & Miao, Chunyan & Roel, Wuyts & Shen, Zhiqi & Catthoor, Francky., Implementation of Fuzzy Cognitive Maps Using Fuzzy Neu-ral Network and Application in Prediction of Time Series. IEEE T. Fuzzy Sys- tems. 2010, 18, pp. 233-250. doi: 10.1109/TFUZZ.2009.2038371.

11. Vanhoenshoven, Frank & Nápoles, Gonzalo & Bielen, Samantha & Vanhoof, Koen. Fuzzy Cognitive Maps Employing ARIMA Components for Time Series Forecasting. 2018, pp. 255-264. doi: 10.1007/978-3-319-59421-7_24.

12. Alghzawi, Ahmad & Nápoles, Gonzalo & Sammour, George & Vanhoof, Koen., Forecasting Social Security Revenues in Jordan Using Fuzzy Cognitive Maps., 2018, pp. 246-254 doi: 10.1007/978-3-319-59421-7_23.

13. Averkin A.N., Yarushev S.A., Pavlov V.Yu., Cognitive hybrid decision support and forecasting systems. 2017, 36, pp. 632-642. doi: 10.15827/0236-235X.120.632-642.

14. Yarushev S.A., Averkin A.N., Efremova N.A., Hybrid fuzzy cognitive maps in decision support and forecasting tasks. International Journal of Software Products and Systems., 2017, 19. doi: 10.15827/2311-6749.25.291.

15. Nápoles, Gonzalo & Grau, Isel & Bello, Rafael & Grau, Ricardo, Two-steps Learning of Fuzzy Cognitive Maps for Prediction and Knowledge Dis-covery on the HIV-1 Drug Resistance. Expert System with Applications, 2014, 41. 821-830. doi: 10.1016/j.eswa.2013.08.012.

16. Wojciech Froelich, Towards improving the efficiency of the fuzzy cognitive map classifier, Neurocomputing, 2017, vol. 232, 83-93, doi: 10.1016/j.neucom.2016.11.059.

17. Laricheva E.A., Lagerev D.G., Construction and analysis of a cognitive model of the process of choosing a profession by graduates in the primary education systemsecondary vocational education, Economic psychology of innovation management: proceedings of the mezhregion. scientific-practical. Internet Conference – Bryansk: BSTU, 2008. pp. 47-51.

18. R. Axelrod, The analysis of cognitive maps, in: Structure of Decision: The Cognitive Maps of Political Elites, 1976, 55–73. https://press.princeton.edu/books/hardcover/9780691644165/structure-of-decision.

19. Strokova L.A., The use of fuzzy cognitive maps in the development of computational models of foundations, Proceedings of Tomsk Polytechnic University, Georesources Engineering, vol. 314, No. 5, 2009. https://cyberleninka.ru/article/n/ispolzovanie-nechetkih-kognitivnyh-kart-pri-razrabotke-raschetnyh-modeley-osnovaniy.

20. Meshalkin V.P., Belozersky A.Yu., Methodological foundations of an integrated risk management system of an industrial enterprise, Transport Business of Russia, No. 2, 2011, pp. 189-191. https://cyberleninka.ru/article/n/metodologicheskie-osnovy-kompleksnoy-sistemy-upravleniya-riskami- promyshlennogo-predpriyatiya.

21. Ginis L.A., Development of cognitive modeling tools for the study of complex systems, Engineering Bulletin of the Don, 2013, vol. 26, No. 3 (26), p. 66. https://cyberleninka.ru/article/n/razvitie-instrumentariya-kognitivnogo-modelirovaniya-dlya-issledovaniya-slozhnyh-sistem

22. Marigodov V. K., Analysis of the cognitive map of the learning system based on expert assessments, Visnik SevNTU. Ser.: Pedagogika. 2013. V. 144. pp. 77-80. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exeC21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/Vsntup_2013_144_15.pdf

23. Oskin A.F., Oskin D.A., Application of fuzzy cognitive maps for modeling poorly structured systems, Bulletin of Polotsk State University. Series C, Fundamental Sciences. 2017. № 4. pp. 15-20. http://elib.psu.by:8080/handle/123456789/20350

24. Thomas L. Saaty “Axiomatic foundation of the analytic hierarchy process “, Management science, 1986, 32 (7), pp. 841-855.

25. Mohr S, Software design for a fuzzy cognitive map modeling tool. Tensselaer Polytechnic Institute, Troy, 1997 https://www.researchgate.net/publication/267701424_Software_Design_For_a_Fuzzy_Cognitive_Map_Modeling_Tool

26. Aguilar, Jose & Contreras, José., The FCM designer tool, 2010 doi: 10.1007/978-3-642-03220-2_4

27. S. A. Gray, S. Gray, L. J. Cox and S. Henly-Shepard, Mental Model-er: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmen-tal Management, 46th Hawaii International Conference on System Sciences, 2013, 965-973. doi: 10.1109/HICSS.2013.399

28. Franciscis, Dimitri. JFCM: A Java library for fuzzy cognitive maps. Intelligent Systems Reference Library, 2014, 54. 199-220. doi: 10.1007/978-3-642-39739-4_12

29. Poczeta, Katarzyna & Yastrebov, Alexander & Papageorgiou, Elpin-iki. (2015). Learning Fuzzy Cognitive Maps using Structure Optimization Genetic Algorithm, 2015, doi: 10.15439/2015F296

30. Papageorgiou, Elpiniki & Poczeta, Katarzyna & Laspidou, Chrysi. (2016). Hybrid Model for Water Demand Prediction based on Fuzzy Cognitive Maps and Artificial Neural Networks. 2016 IEEE International Conference on Fuzzy Systems (FUZZ). doi: 10.1109/FUZZ-IEEE.2016.7737871

31. M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," in IEEE Transactions on Neural Networks, 1994, vol. 5, no. 6, 989-993, doi: 10.1109/72.329697

32. Simon Haykin, Neural Networks: A Comprehensive Foundation (2nd. ed.). Prentice Hall PTR, USA., 1998, doi: 10.5555/521706

33. León, M., Nápoles, G., Rodriguez, C., Lorenzo, M., Bello, R., Vanhoof, K., A Fuzzy Cognitive Maps Modeling, Learning and Simulation Framework for Studying Complex System. IWINAC, 2011. https://www.semanticscholar.org/paper/A-Fuzzy-Cognitive-Maps-Modeling%2C-Learning-and-for-Le%C3%B3n-N%C3%A1poles/7e7af4de3fef3656c4a9170f4424262b839889c3#citing-papers

34. Nápoles, Gonzalo & Leon Espinosa, Maikel & Grau, Isel, Vanhoof, Koen, Fuzzy Cognitive Maps Tool for Scenario Analysis and Pattern Classifica-tion, 2017 doi: 10.1109/ICTAI.2017.00103

35. Nápoles, Gonzalo, Bello, Rafael, Vanhoof, Koen, How to Improve the Convergence on Sigmoid Fuzzy Cognitive Maps?. Intelligent Data Analysis, 2014, 18. 77-88. https://www.researchgate.net/publication/271832015_How_to_Improve_the_Convergence_on_Sigmoid_Fuzzy_Cognitive_Maps

36. Nápoles, Gonzalo, Papageorgiou, Elpiniki, Bello, Rafael, Vanhoof, Koen, On the Convergence of sigmoid Fuzzy Cognitive Maps. Information Sci-ences, 2016, 349. doi: 10.1016/j.ins.2016.02.040

37. Maksimov V.I., Grigoryan A.K., Kornoushenko E.K., Software package "Situation" for modeling and solving weakly formalized problems, International Conf. On management issues. Moscow, IPU RAS, June 29 — July 2, 1999 Moscow, 1999. Vol. 2. pp. 58-65.

38. Kulinich A.A., Maksimov V.I., The system of conceptual modeling of socio-political situations "Compass", Collection of dokl. "Modern management technologies", Scientific and practical. seminar "Modern management technologies for the administration of cities and regions". M., 1998. pp. 115-123

39. Avdeeva Z.K., Maksimov V.I., Rabinovich V.M., Integrated system "COURSE" for cognitive management of the development of situations, Tr. IPU RAS. M., 2001. Vol. XIV. pp. 89-114

40. Kulinich A.A., Cognitive decision support system "Canvas", Software products and systems. 2002. No. 3. pp. 25- 28.

41. Silov V.B. Strategic decision-making in a fuzzy environment. Moscow: INPRO-RES, 1995. 228 p.

42. Gorelova G.V., Radchenko S.A., Software system of cognitive modeling of sociotechnical systems, Izv. TRTU. Tem.. Actual problems of economics, management and law. Taganrog, 2004. № 4 (39). pp.218-227

43. Zabolotsky M.A., Polyakova I.A., Tikhonin A.V., Application of cognitive modeling in quality management of specialist training, Management of large systems. 2007. № 16. pp. 91-98

44. Korostelev D.A., Lagerev D.G., Suspensovsky A.G., Decision support system based on fuzzy cognitive models "IGLA", The Eleventh National Conference on Artificial Intelligence with international participation CII-2008, Dubna, September 28 – October 3, 2008. M., 2008. Vol. 3. pp. 327-329

45. Pylkin A.N., Kroshilin A.V., Kroshilina S.V., Methodology of cognitive analysis in the automation of material flow management, Computer science and Control systems. 2012.

46. Putyato M.M., Development of methods and algorithms for intellectual decision-making support based on fuzzy cognitive maps, dissertation of Candidate of Technical Sciences: 05.13.01 / Putyato Mikhail Mikhaylovich; [Place of defense: Kuban State Technical University. un-t]. Krasnodar, 2010. 152 p.: ill. RGB OD, 61 11-5/1597


Review

For citations:


Petukhova A.V., Kovalenko A.V. INFLUENCE OF SPACE CHARGE BREAKDOWN ON THE PERFORMANCE OF ELECTROMEMBRANE SYSTEMS. Computational Mathematics and Information Technologies. 2022;6(2):81-95. https://doi.org/10.23947/2587-8999-2022-1-2-81-95

Views: 246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)