HYDRODYNAMIC WAVE PROCESSES NUMERICAL MODELING IN THE COASTAL RECREATIONAL ZONE OF THE TSIMLYANSK RESERVOIR
https://doi.org/10.23947/2587-8999-2021-1-1-36-43
Abstract
This paper presents the results of wave regime hydrophysical characteristics calculations in the area of the accumulative shore of the Tsimlyansky reservoir northwestern part. Wave hydrodynamics model based on 3D mathematical model that includes three Navier-Stokes motion equations, the continuity equations for an incompressible fluid was used. The discretization of the hydrodynamic equations was performed using the pressure correction method. Numerical algorithms and the software package implementing them are used to determine the pressure field, the water medium velocity vector field and to plot the pressure a given section of the reservoir water area. The results of the study can be used in the study of hydrophysical processes, assessment of the hydrodynamic impact on the formation of the coast-line and the bottom relief of large plaintype reservoirs in the Southern Russia.
Keywords
About the Authors
A. I. SukhinovRussian Federation
Sukhinov Alexander, corresponding Member of the Russian Academy of Sciences, Doctor of Science in Physics and Maths, Professor
1st Gagarin Square, Rostov-on-Don
V. V. Sidoryakina
Russian Federation
Sidoryakina Valentina, Candidate of Science in Physics and Maths, Associate professor
nitiative Street, Taganrog
E. A. Protsenko
Russian Federation
Protsenko Elena, Candidate of Science in Physics and Maths, Associate professor
nitiative Street, Taganrog
References
1. Vakhitov R.R., Karimova L.Z. Some aspects of the impact of reservoirs on the geoecological environment // Problems of life support for large cities. - Naberezhnye Chelny. ‒ 2002. ‒ P. 360-361 (in Russian).
2. Usmanov B., Nicu I.C., Gainullin I., Khomyakov P.V. Monitoring and assessing the destruction of archaeological sites from Kuibyshev reservoir coastline. Tatarstan Republic, Russian Federation. A case study // Journal of Coastal Conservation. ‒ 2018. ‒ Vol. 22, № 2. – P. 417–429. DOI:10.1007/s11852-017-0590-9.
3. Vuglinsky V.S. Water resources and water balance of large reservoirs of the USSR // Moscow: Gidrometeoizdat. – 1991, p. 222.
4. Su X., Nilsson C., Pilotto F., Liu S., Shi S., Zeng B. Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir // Sci. Total Environ. ‒ 2017, 599 –600. ‒ P. 1485–1492. DOI: 10.1016/j.scitotenv.2017.05.001.
5. Nikanorov A.M., Horuzhaya T.A., Minina L.I., Martysheva N.A. The danger of "blooming" of the Tsimlyansk reservoir // Vodoochistka. Water treatment. Water supply. ‒ 2011. ‒ Vol. 2, № 38. – P. 70– 74.
6. Khoruzhaya T.A., Minina L.I. Assessment of the ecological state of the Tsimlyanskoye, Proletarskoye and Veselovskoye reservoirs // Meteorology and Hydrology. ‒ 2017. ‒ Vol. 5. – P. 117–122.
7. Bakaeva E.N., Ignatova N.Akh. Water quality in the dam part of the Tsimlyansk Vodoksranilish under conditions of the color of blue-green microalgae // Global nuclear safety. ‒ 2013. ‒ Vol. 1, № 6. – P. 23-28.
8. Lobchenko E.E., Minina L.I., Nichiporova I.P., Pervysheva O.A. Dynamics of water quality in the Tsimlyansk reservoir (for the period from 1979 to 2014) // Water management of Russia: problems, technologies, management. ‒ 2016. ‒ Vol. 6. – P. 74-92.
9. Monin A.S. Turbulence and microstructure in the ocean // Physics-Uspekhi. ‒ 1973. ‒ Vol. 109, № 2. – P. 333-354.
10. Shokin Yu.I., Chubarov L.B., Marchuk An.G., Simonov K.V. Vychislitelnyi eksperiment v probleme tsunami // Novosibirsk: Nauka. Sib. otd. ‒ 1989, ‒ p 164.
11. Belotserkovskiy O.M. Turbulentnost: novye podkhody // M.: Nauka. ‒ 2003, p 286.
12. Belotserkovskii O.M., Gushchin V.A., Shchennikov V.V. Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid USSR // Computational Mathematics and Mathematical Physics. ‒ 1975. ‒ Vol. 15, № 1. – P. 190-200. DOI:10.1016/0041-5553(75)90146-9.
13. Belotserkovskiy O.M., Gushchin V.A., Kon'shin V.N. The splitting method for investigating flows of a stratified liquid with a free surface // USSR Computational Mathematics and Mathematical Physics. ‒ 1987. ‒ Vol. 27, № 2. – P. 181-191.
14. Sukhinov A.I., Chistyakov A.E., Protsenko E.A., Sidoryakina V.V., Protsenko S.V. Accounting method of filling cells for the hydrodynamics problems solution with complex geometry of the computational domain // Matem. Mod. ‒ 2019. ‒ Vol. 31, № 8. – P. 79–100. DOI: https://doi.org/10.1134/S0234087919080057.
15. Sukhinov A.I., Chistyakov A.E., Protsenko E.A., Sidoryakina V.V., Protsenko S.V. Set of coupled suspended matter transport models including three-dimensional hydrodynamic processes in the coastal zone // Matem. Mod. ‒ 2020. ‒ Vol. 32, № 2. – P. 3–23. DOI: https://doi.org/10.20948/mm-2020-02-01.
16. Sukhinov A.I., Chistyakov A.E., Protsenko E.A., Sidoryakina V.V., Protsenko S.V. Parallel algorithms for solving the problem of coastal bottom relief dynamics // Num. Meth. Prog. ‒ 2020. ‒ Vol. 21, № 3. – P. 196–206. DOI: https://doi.org/10.26089/NumMet.v21r318.
17. Sukhinov A.I., Chistyakov A.Ye., Fomenko N.A. Metodika postroyeniia raznostnykh skhem dlia resheniia zadach diffuzii-konvektsii- reaktsii, uchityvaiushchikh stepen zapolnennosti kontrolnykh yacheek // Izvestiia YUFU. Tekhnicheskie nauki. ‒ 2013. ‒ Vol. 4, № 141. – P. 87-98.
18. Sidoryakina V.V., Sukhinov A.I. Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem // Comput. Math. Math. Phys. ‒ 2017. ‒ Vol. 57, № 6. – P. 978–994. DOI:https://doi.org/10.1134/S0965542517060124.
19. Sukhinov A.I., Sukhinov A.A. 3D Model of Diffusion-Advection-Aggregation Suspensions in Water Basins and Its Parallel Realization // Parallel Computational Fluid Dynamics, Multidisciplinary Applications, Proceedings of Parallel CFD 2004 Conference, Las Palmas de Gran Canaria, Spain, ELSEVIER, Amsterdam-Berlin-London-New York-Tokyo. ‒ 2005. – P. 223-230.
20. Samarskii A.A. The Theory of Difference Schemes // New York, Basel, Marcel Dekker Inc. ‒ 2001, p. 761.
21. Samarskiy A.A., Nikolayev Ye.S. Metody resheniia setochnykh uravnenii // M.: Nauka. ‒ 1978, p. 592.
22. Sukhinov A.I., Chistyakov A.E. Adaptive Modified Alternating Triangular Iterative Method for Solving Grid Equations with a Non-Self-Adjoint Operator // Mathematical Models and Computer Simulations. – 2012. ‒ Vol. 4, № 4. – P. 398-409.
Review
For citations:
Sukhinov A.I., Sidoryakina V.V., Protsenko E.A. HYDRODYNAMIC WAVE PROCESSES NUMERICAL MODELING IN THE COASTAL RECREATIONAL ZONE OF THE TSIMLYANSK RESERVOIR. Computational Mathematics and Information Technologies. 2021;5(1):36-43. https://doi.org/10.23947/2587-8999-2021-1-1-36-43