Preview

Computational Mathematics and Information Technologies

Advanced search

Improvement of numerical solution smoothness for the hydrodynamics problems modeling on rectangular grids

https://doi.org/0.23947/2587-8999-2019-1-1-1-16

Abstract

The article has been devoted to the problem of improvement real numerical modeling accuracy for the viscous fluid flow between two coaxial half-cylinders on rectangular grids taking into account the filling of cells are used to solve this problem. Approximation of the problem with respect to time is performed on the basis of splitting schemes for physical processes. Difference schemes for solving the hydrodynamic problem are proposed. Analytic solution describing the Taylor-Couette flow is used as a standard to evaluate the numerical solution accuracy of hydrodynamics problems. The simulation was performed on a sequence of condensing computed grids of sizes 11 × 21, 21 × 41, 41 × 81, and 81 × 161 nodes for the areas of smooth and piecewise rectangular boundaries. The grids taking into account the filling of cells are used to improve the smoothness of the solution. In the case of piecewise rectangular approximation the numerical solution error reaches 70%. The grids taking into account the filling of cells reduce the numerical solution error to 6% for the test problem. The test problem shows that using the grid condenced in each spatial direction by 8 times does not lead to increasing the accuracy solutions whereas the solutions accuracy obtained on the basis proposed approach has significant advantage in accuracy.

About the Authors

Alexander Ivanovich Sukhinov
Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation)
Russian Federation

Sukhinov Alexander Ivanovich, Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation), Doctor of Science in Physics and Maths, Professor



Alexander Evgenievich Chistyakov
Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation)
Russian Federation

Chistyakov Alexander Evgenievich, Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation), Doctor of Science in Physics and Maths, Associate professor



Elena Anatolevna Protsenko
Taganrog Institute of A.P. Chekhov (branch) RSUE (Initiative Street, Taganrog, Russian Federation)
Russian Federation

Protsenko Elena Anatolevna, Taganrog Institute of A.P. Chekhov (branch) RSUE (Initiative Street, Taganrog, Russian Federation), Candidate of Science in Physics and Maths, Associate professor



Valentina Vladimirovna Sidoryakina
Taganrog Institute of A.P. Chekhov (branch) RSUE (Initiative Street, Taganrog, Russian Federation)
Russian Federation

Sidoryakina Valentina Vladimirovna, Taganrog Institute of A.P. Chekhov (branch) RSUE (Initiative Street, Taganrog, Russian Federation), Candidate of Science in Physics and Maths, Associate professor



Sofya Vladimirovna Protsenko
Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation)
Russian Federation

Protsenko Sofya Vladimirovna, Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation), postgraduate student



References

1. A.I. Sukhinov, A.E. Chistyakov, E.F. Timofeeva, A.V. Shishenya. Mathematical model for calculating coastal wave processes // Mathematical Models and Computer Simulations, 2013. Volume 5. Issue 2, p.122–129.

2. A. I. Sukhinov, A. E. Chistyakov, and E. V. Alekseenko, Numerical Realization of the Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System // Mathematical Models and Computer Simulations, 2011. Volume 23. Issue 3, pp.3–21.

3. A.I. Sukhinov, A.Ye. Chistyakov, A.V. Shishenya, Ye.F. Timofeyeva. Predskazatel'noye modelirovaniye pribrezhnykh gidrofizicheskikh protsessov na mnogoprotsessornoy sisteme s ispol'zovaniyem yavnykh skhem // Matematicheskoye modelirovaniye, 2018. Т.30, № 3. S. 83–100.

4. T. Ezer, G.L. Mellor Sensitivity studies with the North Atlantic sigma coordinate Princeton Ocean Model. Dynamics of Atmospheres and Oceans. 2000. V. 32. pp. 155–208.

5. A.S. Monin. Turbulentnost' i mikrostruktura v okeane // Uspekhi fizicheskikh nauk, 1973. T. 109, № 2. S.333-354.

6. Yu.I. Shokin. Vychislitel'nyy eksperiment v probleme tsunami / YU.I. Shokin, L. B. Chubarov, An. G. Marchuk, K.V. Simonov. – Novosibirsk: Nauka. Sib. otd-napravleniye, 1989. 164 s.

7. Yu.V. Vasilevskiy, A.A. Danilov, D.V. Nikolayev, S.G. Rudnev, V.YU. Salamatova, A.V. Smirnov. Konechno-elementnyy analiz zadach bioimpedansnoy diagnostiki // ZH. vychisl. matem. i matem. fiz., 2012. T. 52, № 4. S. 733–745.

8. M.V. Muratov, I.B. Petrov, I.Ye. Kvasy. Chislennoye resheniye zadach seysmorazvedki v skvazhinakh treshchinovatykh rezervuarov // Matematicheskoye modelirovaniye, 2016. T. 28, № 7. S.31–44.

9. B.N. Chetverushkin, M.V. Yakobovskiy. Vychislitel'nyye algoritmy i arkhitektura sistem vysokoy proizvoditel'nosti // Preprinty IPM im. M.V.Keldysha, 2018, 052, 12 s.

10. L.D. Landau., Ye.M. Lifshits. Gidrodinamika. – M .: Nauka, Gl. red. fiz-mat.lit., 1986. 736 s.

11. O.M. Belotserkovskiy. Turbulentnost': novyye podkhody. – M.: Nauka, 2003. 286 s.

12. O.M.BelotserkovskiiV.A.GushchinV.V.Shchennikov. Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluidUSSR // Computational Mathematics and Mathematical Physics, 1975. Volume 15. Issue 1, pp. 190–200.

13. O.M. Belotserkovskiy, V.A. Gushchin, V.N. Kon'shin. The splitting method for investigating flows of a stratified liquid with a free surface // USSR Computational Mathematics and Mathematical Physics. 1987.Volume 27. Issue 2, pp. 181–191.

14. A.I. Sukhinov, A.Ye. Chistyakov, N.A. Fomenko. Metodika postroyeniya raznostnykh skhem dlya resheniya zadach diffuzii-konvektsii-reaktsii, uchityvayushchikh stepen' zapolnennosti kontrol'nykh yacheyek // Izvestiya YUFU. Tekhnicheskiye nauki, 2013. № 4(141). S. 87–98.

15. A.A. Samarskii. The theory of difference schemes. – NY – Basel, Marcel Dekker, Inc, 2001, 761 p.

16. A.A. Samarskiy, P.N. Vabishchevich. Chislennyye metody resheniya zadach konvektsii-diffuzii. – M .: Editorial URSS, 1999. 247 s.

17. A.A. Samarskiy, Ye.S. Nikolayev. Metody resheniya setochnykh uravneniy. – M .: Nauka, 1978. 592 s.

18. A. N. Konovalov, To the Theory of the Alternating Triangle Iteration Method, Sib. Mat. Zh. 43 (3), 552–572 (2002). [Sib. Math. J. 43 (3), 439–457 (2002)].

19. A.I. Sukhinov, A.E. Chistyakov, Adaptive Modified Alternating Triangular Iterative Method for Solving Grid Equations with a NonSelfAdjoint Operator // Matematicheskoe Modelirovanie, 2012, Vol. 24, No. 1, pp. 3–20.

20. S.V. Vallander. Lektsii po gidroaeromekhanike. Ucheb. posobiye. – L.: LGU, 1978. 296 s.


Review

For citations:


Sukhinov A.I., Chistyakov A.E., Protsenko E.A., Sidoryakina V.V., Protsenko S.V. Improvement of numerical solution smoothness for the hydrodynamics problems modeling on rectangular grids. Computational Mathematics and Information Technologies. 2019;3(1). (In Russ.) https://doi.org/0.23947/2587-8999-2019-1-1-1-16

Views: 138


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)