Software package for predicting possible scenarios for changing the geometry of the bottom of shallow water reservoirs using high-performance computing
https://doi.org/10.23947/2587-8999-2019-2-2-118-135
Abstract
The article is devoted to the study of the model of transport and sedimentation of suspended solids in the coastal zone. The model takes into account the following processes: advection transport due to the movement of the aqueous medium, microturbulent diffusion and gravitational sedimentation of particles of the suspension, as well as a change in the geometry of the bottom caused by the sedimentation of particles of the suspension or the rise of particles of bottom sediments. The article presents the results of a study of the correctness of the initial-boundary-value problem corresponding to the constructed model. Software package has been developed for predicting possible scenarios for changing the geometry of the bottom of reservoirs in shallow water using high-performance computing.
About the Authors
Alexander Ivanovich SukhinovRussian Federation
Sukhinov Alexander Ivanovich, Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation), Doctor of Science in Physics and Maths, Professor
Alexander Evgenievich Chistyakov
Russian Federation
Chistyakov Alexander Evgenievich, Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation), Doctor of Science in Physics and Maths, Associate professor
Valentina Vladimirovna Sidoryakina
Russian Federation
Sidoryakina Valentina Vladimirovna, Taganrog Institute of A.P. Chekhov (branch) RSUE (Initiative Street, Taganrog, Russian Federation), Candidate of Science in Physics and Maths, Associate professor
Elena Anatolevna Protsenko
Russian Federation
Protsenko Elena Anatolevna, Taganrog Institute of A.P. Chekhov (branch) RSUE (Initiative Street, Taganrog, Russian Federation), Candidate of Science in Physics and Maths, Associate professor
Sofya Vladimirovna Protsenko
Russian Federation
Protsenko Sofya Vladimirovna, Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation), postgraduate student
References
1. Leontyev, I.O.: Coastal Dynamics: Waves, Moving Streams, Deposits Drifts. GEOS, San Moscow (2001) (in Russian). 2. Liu,X., Qi,S., Huang,Y., ChenY., Du,P.: Predictive modeling in sediment transportation across multiple spatial scales in the Jialing River Basin of China. International Journal of Sediment Research, 30:3, pp. 250–255 (2015).
2. Aksoy, H., Kavvas, M.L.: A review of hillslope and watershed scale erosion andsediment transport models. Catena, 64:2–3, pp. 247-271 (2005).doi:http://dx.doi.org/10.1016/j.catena.2005.08.008.
3. Ouda, M., Toorman, E.A.: Development of a new multiphase sediment transport model for free surface flows. International Journal of Multiphase Flow, 117, pp. 81-102 (2019).
4. Sukhinov, A.I., Sukhinov, A.A.: Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models. Parallel Computational Fluid Dynamics, pp. 231-238, (2005). doi: 10.1016/B978-044452024-1/50030-0.
5. Sukhinov A.I., Sukhinov A.A. Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models. Parallel Computational Fluid Dynamics, Multidisciplinary Applications, Proceedings of Parallel CFD 2004 Conference, Las Palmas de Gran Canaria, Spain, ELSEVIER, AmsterdamBerlin-London-New York-Tokyo, pp. 231-238, (2005). doi: 10.1016/B978-044452024- 1/50030-0.
6. Alekseenko, E., Roux, B., Sukhinov, A., Kotarba, R., Fougere, D.: Coastal hydrodynamics in a windy lagoon. Nonlinear Processes in Geophysics, 20:2, pp. 189-198 (2013). doi: 10.1016/j.compfluid.2013.02.003.
7. Alekseenko, E., Roux, B., Sukhinov, A., Kotarba, R., Fougere, D.: Nonlinear hydrodynamics in a mediterranean lagoon. Computational Mathematics and Mathematical Physics, 57:6, pp. 978-994 (2017). doi: 10.5194/npg-20-189-2013. 9. Francke, T., López-Tarazón J.A., Vericat, D. Bronstert, A., Batalla, R.J.: Flood-based analysis of high-magnitude sediment transport using a non-parametric method. Earth Surface Processes and Landforms, 33:13, pp. 2064-2077 (2008). doi: http://doi.org/10.1002/esp.1654. 10. Karaushev, A.N.: Theory and Methods for River Load Calculation, Leningrad: Gidrometeoizdat, (1977) (in Russian). 11. Alekseevskii, N.I.: Hydrophysics, Moscow: Akademiya, (2006) (in Russian).
8. Goloviznin V.M., Chetverushkin B. N.: New generation algorithms for computational fluid dynamics. Computational Mathematics and Mathematical Physics, 58:8, pp. 1217–1225 (2018). doi: https://doi.org/10.1134/S0965542518080079.
9. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A.: Mathematical modeling of sediment transport in the coastal zone of shallow reservoirs. Mathematical Models and Computer Simulations, 6:4, pp.351-363 (2014). doi: 10.1134/S2070048214040097. 14. Sidoryakina, V.V., Sukhinov, A.I.: Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem. Computational Mathematics and Mathematical Physics, 57:6, pp. 978-994 (2017). doi: 10.7868/ S0044466917060138. 15. Sukhinov, A.I., Sidoryakina, V.V.: Convergence of linearized sequence tasks to the nonlinear sediment transport task solution. Matematicheskoemodelirovanie, 29:11, pp.19–39 (2017).
10. Belotserkovskii, O.M., Gushchin, V.A., Shchennikov, V.V.: Decomposition method applied to the solution of problems of viscous incompressible fluid dynamics. Computational Mathematics and Mathematical Physics, 15, pp. 197-207 (1975).
11. Favorskaya, A.V., Petrov, I.B.: Numerical modeling of dynamic wave effects in rock masses. Doklady Mathematics, 95:3, pp. 287-290 (2017). doi: 10.1134/S1064562417030139. 18. Sukhinov, A.I., Chistyakov, A.E., Shishenya, A.V.: Error estimate for diffusion equations solved by schemes with weights. Mathematical Models and Computer Simulations, 6:3, pp. 324-331(2014).doi: https://doi.org/10.1134/S2070048214030120.
Review
For citations:
Sukhinov A.I., Chistyakov A.E., Sidoryakina V.V., Protsenko E.A., Protsenko S.V. Software package for predicting possible scenarios for changing the geometry of the bottom of shallow water reservoirs using high-performance computing. Computational Mathematics and Information Technologies. 2019;3(2). https://doi.org/10.23947/2587-8999-2019-2-2-118-135