Preview

Computational Mathematics and Information Technologies

Advanced search

Variational assimilation of temperature for the model of hydrodynamics of the Baltic Sea: the solution of the open boundary problem

https://doi.org/10.23947/2587-8999-2018-2-1-1-8

Abstract

The problem of modeling water areas with «liquid» (open) lateral boundaries is discussed. The mathematical model of the Baltic Sea circulation, developed in INM RAS, is considered. It is based on the system of thermohydrodynamic equations in the Boussinesq and hydrostatic approximations. The splitting method is used for time approximation in the model. Temperature (salinity) assimilation problem is investigated and solved for reconstructing unknown functions in boundary conditions at open boundaries. The domain decomposition method was used for acceleration of the assimilation procedure.

About the Authors

Valery Ivanovich Agoshkov
Institute of Numerical Mathematics of the Russian Academy of Sciences (Gubkin St. 8, Moscow, Russian Federation) Lomonosov Moscow State University (Leninskie Gory 1, Moscow, Russian Federation)
Russian Federation

Agoshkov Valery Ivanovich, Principal Researcher of the Institute of Numerical Mathematics of the Russian Academy of Sciences (Gubkin St. 8, Moscow, Russian Federation), Professor of the Lomonosov Moscow State University (Leninskie Gory 1, Moscow, Russian Federation), Professor, Doctor of Sciences in Physics and Mathematics, Honored Scientist of the Russian Federation.



Tatiana Olegovna Sheloput
Institute of Numerical Mathematics of the Russian Academy of Sciences (Gubkin St. 8, Moscow, Russian Federation)
Russian Federation

Sheloput Tatiana Olegovna, graduate student of the Institute of Numerical Mathematics of the Russian Academy of Sciences (Gubkin St. 8, Moscow, Russian Federation)



References

1. Agoshkov, V.I. Statement and study of some inverse problems in modelling of hydrophysical fields for water areas with ‘liquid’ boundaries / V.I. Agoshkov // Russ. J. Numer. Anal. Math. Modelling. – 2017. – V. 32, No. 2. – pp. 73-90.

2. Agoshkov, V.I. The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with ‘liquid’ boundaries / V.I. Agoshkov, T.O. Sheloput // Russ. J. Numer. Anal. Math. Modelling. – 2017. – V. 32, No. 3. – pp. 147-164.

3. Agoshkov, V. I. The study and numerical solution of the problem of heat and salinity transfer assuming ’liquid’ boundaries / V. I. Agoshkov, T. O. Sheloput // Russ. J. Numer. Anal. Math. Modelling. – 2016. – Vol. 31, No. 2. – pp. 71-80.

4. Gejadze, I. Yu. Open Boundary Control Problem for Navier-Stoces Equations Including a Free Surface: Data Assimilation / I. Yu. Gejadze, G. J. M. Copeland, I. M. Navon // Computers and Mathematics with Applications. – 2006. – V.52. – pp. 1269-1288.

5. Marchesiello, P. Open boundary conditions for long-term integration of regional oceanic models / P. Marchesiello, J. C. McWilliams, A. Shchepetkin // Ocean Modelling. – 2001. – No. 3. – pp. 1-20.

6. Ngodock, H. On the direct assimilation of along-track sea-surface height observations into a free-surface ocean model using a weak constraints four-dimensional variational (4D-Var) method / H. Ngodock, M. Carrier, I. Souopgui, S. Smith, P. Martin, P. Muscarella, G. Jacobs // Quarterly Journal of the Royal Meteorological society. – 2016. – V.142. – pp. 1160-1170.

7. Semenov, E. V. Problems of Operational Data Assimilation for Marginal Seas / E. V. Semenov, E. V. Mortikov // Izvestiya, Atmospheric and Oceanic Physics. – 2012. – Vol. 48, No. 1. – pp. 74-85.

8. Temam R. Open Boundary Conditions for the Primitive and Boussinesq Equations / R. Temam, J.Tribbia // Journal of the Atmospheric Sciences. – 2003. – V.60. – pp. 2647-2660.

9. Zalesny V. The Baltic Sea circulation modelling and assesment of marine pollution / V. Zalesny, A. Gusev, S. Chernobay, R. Aps, P. Kujala, J.Rytkönen, R. Tamsalu // Russ. J. Numer. Analysis and Math Modelling. – 2014. – V.29, No. 2. – pp. 129-138.

10. Baltic Sea Physics Reanalysis from SMHI (1989-2014) // Copernicus marine environment monitoring service. URL: http://marine.copernicus.eu (date of access: 13.03.2017).

11. Agoshkov, V.I. Metody resheniya obratnykh zadach i zadach variatsionnoy assimilyatsii dannykh nablyudeniy v problemakh krupnomasshtabnoy dinamiki okeanov i morey. ‒ Moscow: INM RAS, 2016. ‒ 192 p.

12. Agoshkov, V. I. Issledovaniye i chislennoye resheniye odnoy obratnoy zadachi modelirovaniya tsirkulyatsii v akvatoriyakh s «zhidkimi» granitsami / V.I. Agoshkov, D.S. Grebennikov, T.O. Sheloput // Mathematical notes of NEFU. - 2015. - V. 22, No. 2. - P. 3-15.

13. Dementieva, E. B. Vosstanovleniye granichnoy funktsii po dannym nablyudeniy dlya zadachi rasprostraneniya poverkhnostnykh voln v akvatorii s otkrytoy granitsey / E. V. Dementieva, E. D. Karepov, V. In . Shaidurov// Siberian Journal of Industrial Mathematics. ‒ 2013. ‒ V. 16, No. 1. ‒ pp. 10-20.

14. Diansky, N.A. Sigma-model' global'noy tsirkulyatsii okeana i yeye chuvstvitel'nost' k variatsiyam napryazheniya treniya vetra / N.A. Diansky, A.V. Bagno, V.B. Forestry// Physics of the atmosphere and ocean. ‒ 2002. ‒ V. 38, No. 4. pp. 537-556.

15. Marchuk, G. I. Matematicheskiye modeli v geofizicheskoy gidrodinamike i chislennyye metody ikh realizatsii/ G.I. Marchuk, V.P. Dymnikov, V.B. Forestry. ‒ Gidrometeoizdat, 1987. ‒ 296 p.

16. Marchuk G.I. Metody vychislitel'noy matematiki. - Moscow: Nauka, 1989. ‒ 608 p.

17. Chernov, I. A. Chislennoye modelirovaniye krupnomasshtabnoy dinamiki Belogo morya / I. A. Chernov, A. V. Tolstikov // Proceedings of the Karelian Research Center of the Russian Academy of Sciences. ‒ 2014. ‒ No. 4. ‒ pp. 137-142.


Review

For citations:


Agoshkov V.I., Sheloput T.O. Variational assimilation of temperature for the model of hydrodynamics of the Baltic Sea: the solution of the open boundary problem. Computational Mathematics and Information Technologies. 2018;2(1). (In Russ.) https://doi.org/10.23947/2587-8999-2018-2-1-1-8

Views: 95


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)