Preview

Computational Mathematics and Information Technologies

Advanced search

Mathematical modeling of structural-sensitive nanocomposites deformation

https://doi.org/10.23947/2587-8999-2018-2-1-17-24

Abstract

Results of nanocomposites deformation numerical modeling are shown. Large difference in the values of mechanical characteristics at the interface between the matrix and the inclusion is typically for such kind of materials. This problem was solved with using finite elemental complex ANSYS by means of server processors and video cards TESLA. The analytical method – the dual variational formulation of the elasticity problem – was realized for verification of numerical model. Due to results in this paper we can get estimates of nanocomposites mechanical properties, which are important for model construction from such material.

About the Authors

Vladimir Stepanovich Zarubin
The Bauman Moscow State Technical University (2nd Bauman Str., 5, Moscow, Russia)
Russian Federation

Zarubin Vladimir Stepanovich, Professor, Doctor of Engineering Sciences, The Bauman Moscow State Technical University (2nd Bauman Str., 5, Moscow, Russia)



Elena Sergeevna Sergeeva
«JSC Kompozit» (Joint-Stock Company) (Pionerskaya, 4, Korolev, Moscow Region, Russia); The Bauman Moscow State Technical University (2nd Bauman Str., 5, Moscow, Russia)
Russian Federation

Sergeeva Elena Sergeevna, «JSC Kompozit» (Joint-Stock Company), (Pionerskaya, 4, Korolev, Moscow Region, Russia); postgraduate student, The Bauman Moscow State Technical University (2nd Bauman Str., 5, Moscow, Russia)



References

1. Biksha D. Ispol'zovaniye kompozitnykh materialov v oboronnoy promyshlennosti i aerokosmicheskoy industrii / per. s angl. V. Rentyuk // Vestnik elektroniki. 2014. № 1. pp. 24 - 27.

2. Spravochnik po kompozitnym materialam. V dvukh knigakh. Kniga. 1: trans. s angliyskim. A.B. Geller et al., Ed. J. Lubin, B.E. Geller. M.: Mashinostroyeniye, 1988. 448 p.

3. Vasil'yev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov. M.: Mashinostroyeniye, 1988. 272 p.

4. Palermo P. Strukturnyye keramicheskiye nanokompozity: obzor svoystv i metody sinteza poroshkov // Nanomaterialy. 2015. V. 5. № 2. pp. 656-696.

5. Casati R., Vedani M. Metallicheskiye matrichnyye kompozity, usilennyye obzorom nanochastits // Metally. 2014. V. 4. pp. 65-83.

6. Blakslee O.L., Proctor D.G., Seldin E.J., Spence G.B., Weng T. Elastichnyye konstanty piroliticheskogo grafita s uplotneniyem i neraskrytym // J. Appl. Phys. 1970. V. 41. № 8. pp. 3373-3382.

7. Sergeyeva Ye.S. Issledovaniye uprugikh kharakteristik kompozitov s ellipsoidal'nymi vklyucheniyami // Molodezhnyy nauchno-tekhnicheskiy vestnik MGTU im. N.E Baumana. Elektron. zhurn. 2015. №. 5. URL: http://sntbul.bmstu.ru/doc/839933.html (data obrashcheniya: 10.01.17).

8. Zarubin V.S. Prikladnyye zadachi termoprochnosti elementov konstruktsiy M .: Mashinostroyeniye, 1985. 296 p.

9. Zarubin V.S., Kuvyrkin G.N. Matematicheskiye modeli mekhaniki i elektrodinamiki sploshnoy sredy. M .: Izd-vo MGTU im. N.E. Baumana, 2008. 512 p.

10. Sergeyeva Ye.S. Issledovaniye uprugikh kharakteristik nanokompozitov // Molodezhnyy nauchno-tekhnicheskiy vestnik MGTU im. N.E Baumana. Elektron. zhurn. 2016. №. 8. Rezhim dostupa: http://sntbul.bmstu.ru/doc/846958.html (the date of the application 30.01.2017).


Review

For citations:


Zarubin V.S., Sergeeva E.S. Mathematical modeling of structural-sensitive nanocomposites deformation. Computational Mathematics and Information Technologies. 2018;2(1). https://doi.org/10.23947/2587-8999-2018-2-1-17-24

Views: 121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)