Mathematical modeling of structural-sensitive nanocomposites deformation
https://doi.org/10.23947/2587-8999-2018-2-1-17-24
Abstract
Results of nanocomposites deformation numerical modeling are shown. Large difference in the values of mechanical characteristics at the interface between the matrix and the inclusion is typically for such kind of materials. This problem was solved with using finite elemental complex ANSYS by means of server processors and video cards TESLA. The analytical method – the dual variational formulation of the elasticity problem – was realized for verification of numerical model. Due to results in this paper we can get estimates of nanocomposites mechanical properties, which are important for model construction from such material.
Keywords
About the Authors
Vladimir Stepanovich ZarubinRussian Federation
Zarubin Vladimir Stepanovich, Professor, Doctor of Engineering Sciences, The Bauman Moscow State Technical University (2nd Bauman Str., 5, Moscow, Russia)
Elena Sergeevna Sergeeva
Russian Federation
Sergeeva Elena Sergeevna, «JSC Kompozit» (Joint-Stock Company), (Pionerskaya, 4, Korolev, Moscow Region, Russia); postgraduate student, The Bauman Moscow State Technical University (2nd Bauman Str., 5, Moscow, Russia)
References
1. Biksha D. Ispol'zovaniye kompozitnykh materialov v oboronnoy promyshlennosti i aerokosmicheskoy industrii / per. s angl. V. Rentyuk // Vestnik elektroniki. 2014. № 1. pp. 24 - 27.
2. Spravochnik po kompozitnym materialam. V dvukh knigakh. Kniga. 1: trans. s angliyskim. A.B. Geller et al., Ed. J. Lubin, B.E. Geller. M.: Mashinostroyeniye, 1988. 448 p.
3. Vasil'yev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov. M.: Mashinostroyeniye, 1988. 272 p.
4. Palermo P. Strukturnyye keramicheskiye nanokompozity: obzor svoystv i metody sinteza poroshkov // Nanomaterialy. 2015. V. 5. № 2. pp. 656-696.
5. Casati R., Vedani M. Metallicheskiye matrichnyye kompozity, usilennyye obzorom nanochastits // Metally. 2014. V. 4. pp. 65-83.
6. Blakslee O.L., Proctor D.G., Seldin E.J., Spence G.B., Weng T. Elastichnyye konstanty piroliticheskogo grafita s uplotneniyem i neraskrytym // J. Appl. Phys. 1970. V. 41. № 8. pp. 3373-3382.
7. Sergeyeva Ye.S. Issledovaniye uprugikh kharakteristik kompozitov s ellipsoidal'nymi vklyucheniyami // Molodezhnyy nauchno-tekhnicheskiy vestnik MGTU im. N.E Baumana. Elektron. zhurn. 2015. №. 5. URL: http://sntbul.bmstu.ru/doc/839933.html (data obrashcheniya: 10.01.17).
8. Zarubin V.S. Prikladnyye zadachi termoprochnosti elementov konstruktsiy M .: Mashinostroyeniye, 1985. 296 p.
9. Zarubin V.S., Kuvyrkin G.N. Matematicheskiye modeli mekhaniki i elektrodinamiki sploshnoy sredy. M .: Izd-vo MGTU im. N.E. Baumana, 2008. 512 p.
10. Sergeyeva Ye.S. Issledovaniye uprugikh kharakteristik nanokompozitov // Molodezhnyy nauchno-tekhnicheskiy vestnik MGTU im. N.E Baumana. Elektron. zhurn. 2016. №. 8. Rezhim dostupa: http://sntbul.bmstu.ru/doc/846958.html (the date of the application 30.01.2017).
Review
For citations:
Zarubin V.S., Sergeeva E.S. Mathematical modeling of structural-sensitive nanocomposites deformation. Computational Mathematics and Information Technologies. 2018;2(1). https://doi.org/10.23947/2587-8999-2018-2-1-17-24