Preview

Computational Mathematics and Information Technologies

Advanced search

Development the transport and transportation model of nitrogen, phosphorus and silicon compounds in shallow waters

https://doi.org/10.23947/2587-8999-2018-2-67-75

Abstract

The paper covers stoichiometric ratios of nutrients for phytoplankton algae on the basis of which a limiting substance can be determined. Observational models describing the consumption, accumulation of nutrients by phytoplankton and the growth rate of phytoplankton are considered. Three-dimensional mathematical transformation model of phosphorus, nitrogen and silicon forms in the problem of phytoplankton dynamics for shallow waters is developed and researched. It takes into account the convective and diffusive transports; absorption and isolation of nutrients by phytoplankton; transformation cycles of phosphorus, nitrogen and silicon forms.

About the Authors

Alona Aleksandrovna Semenyakina
Supercomputers and Neurocomputers Research Center, Co Ltd. (Italyansky lane, 106, Taganrog, Russian Federation)
Russian Federation

Semenyakina Alona Aleksandrovna, Supercomputers and Neurocomputers Research Center, Co Ltd. (Italyansky lane, 106, Taganrog, Russian Federation), Candidate of Technical Science, Researcher



Vladimir Valeryevich Sumbaev
Southern Federal University (Nekrasovsky lane, 44, Taganrog, Russian Federation)
Russian Federation

Sumbaev Vladimir Valeryevich, Southern Federal University (Nekrasovsky lane, 44, Taganrog, Russian Federation), graduate student



Sofya Vladimirovna Protsenko
Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation)
Russian Federation

Protsenko Sofya Vladinirovna, Don State Technical University (1st Gagarin Square, Rostov-on-Don, Russian Federation), postgraduate student



References

1. Van Straten G., Keesman K.J. Uncertainty propagation and speculation in projective

2. forecasts of environmental change: a lake eutrophication example // Journal of Forecasting. – 1991.

3. – №10. – pp. 163-190.

4. Park R.A. A generalized model for simulating lake ecosystems // Simulation. – 1974. – №23 (2). – pp. 33-50.

5. Bierman V.J., Verhoff F.H., Poulson T.C., Tenney M.W. Multinutrient dynamic models of algal growth and species competition in eutrophic lakes // Modeling the eutrophication process. - Ann Arbor: Ann Arbor Science, 1974.

6. Chen C.W. Concepts and utilities of ecologic models // Journal of Sanitary Engineering Division, ASCE. – 1970. – No.96 (5). – pp. 1085-1097.

7. Jorgensen S.E. An eutrophication model for a lake // Ecological Modelling. – 1976. – No.2(2). – Рp. 147-165.

8. Jorgensen S.E., Mejer H., Friis M. Examination of a lake model // Ecological Modelling. – 1978. – No.4 (2-3). – pp. 253-278.

9. Brodskii A. K. A short course on General ecology: a textbook for Universities. - St. Petersburg: Dean, 2000. – 224 p.

10. Williams B.J. Hydrobiological modelling. - University of Newcastle, NSW, Australia: www.lulu.com, 2006. – 680 p.

11. Epply R.W., Rogers J.N., McCarthy J.J. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton // limnology and Oceanography. – 1969. – No.14. – pp. 912-920.

12. Redfield A.C. The biological control of chemical factors in the environment // American Scientist. – 1958, №46. – pp. 205-222.

13. Samarskii A.A., Vabischevich P. N. Numerical methods for solving convection-diffusion problems. – M.: Edditorial URSS, 1999.

14. Goloviznin V. M., Samara A. A. Difference approximation of convective transport with spatial splitting of time derivative // Mathematical Models and Computer Simulations. – 1998. – Vol. 10, No.1. – pp. 86-100.

15. Sukhinov A.I., Chistyakov A.E., Iakobovski M.V. Accuracy of the numerical solution of diffusion-convection equation based on difference schemes of second and fourth orders of approximation order // Vestn. SUSU. Ser. Calc. mod. inform. – 2016. – Vol. 5, No.1. – pp. 47-62.

16. Sukhinov A.I., Belov Yu.V. Mathematical model of transformation of the phosphorus, nitrogen and silicon forms in a moving turbulent water environment in problems of plankton populations dynamics // Engineering journal of Don. – 2015. – Vol. 37, No.3. – pp. 50.

17. Sukhinov A.I., Khachunts D.S., Chistyakov A.E. A mathematical model of pollutant propagation in near-ground atmospheric layer of a coastal region and its software implementation // Computational Mathematics and Mathematical Physics. – 2015. – Vol. 55, No.7. – pp. 1216-1231.

18. Sukhinov A.I., Nikitina A.V., Chistyakov A.E. Modeling of biological rehabilitation scenario of the Azov Sea // Mathematical modeling. – 2012. – Vol. 24, No.9. – pp. 3-21.

19. Nikitina A.V., Sukhinov A.I., Ugolnitsky, G.A., Usov A.B., Chistyakov A.E., Puchkin M.V., Semenov I.S. Optimal management of sustainable development with biological rehabilitation of the Azov Sea // Mathematical modeling. – 2016. – Vol. 28, No.7. – pp. 96-106.

20. Nikitina A.V., Puchkin M.V., Semenov I.S., Sukhinov A.I., Ugolnitsky G.A., Usov A.B., Chistyakov A.E. Differential-game model of zamora prevention in shallow waters // Managing large systems. – 2015. – Issue 55. – pp. 343-361.

21. Trân J.K. A predator-prey functional response incorporating indirect interference and depletion // Verh. Internat. Verein. Limnol. – 2008. – Vol. 30, Pt 2. – pp. 302-305.

22. Petrov Igor B. Application of grid-characteristic method for numerical solution of deformable solid mechanics dynamical problems // Computational Mathematics and Information Technologies. – 2017. Vol. 1, No 1. – pp. 1-20.

23. Sukhinov A.I., Sidoryakina V.V., Sukhinov A.A. Sufficient convergence conditions for positive solutions of linearized two-dimensional sediment transport problem // Computational Mathematics and Information Technologies. – 2017. Vol. 1, No 1. – pp. 21-35.

24. Nikitina A.V., Semenyakina A.A. Mathematical modeling of eutrophication processes in Azov Sea on supercomputers // Computational Mathematics and Information Technologies. – 2017. Vol.1, No 1. – pp. 82-101.

25. Chistyakov A.E., Protsenko E.A., Timofeeva E.F. Mathematical modeling of oscillatory processes with a free boundary // Computational Mathematics and Information Technologies. – 2017. Vol.1, No 1. – pp. 102-112.

26. Tyutyunov Yu., Senina I., Arditi R. Clustering due to acceleration in the response to population gradient: a simple self-organization model // The American Naturalist. – 2004, 164. – pp. 722-735.

27. Volterra V. Variations and fluctuations of the number of individuals in animal species living together // Rapp. P. – V. Reun. Cons. Int. Explor. Mer. – 1928. 3, pp. 3-51.

28. Yakushev E.V., Mikhailovsky G.E. Mathematical modeling of the influence of marine biota on the carbon dioxide ocean-atmosphere exchange in high latitudes // Air-Water Gas Transfer, Sel. Papers, Third Int. Symp., Heidelberg University, ed. by B. Jaehne and E.C. Monahan, AEON Verlag & Studio, Hanau. – 1995. – pp. 37-48.


Review

For citations:


Semenyakina A.A., Sumbaev V.V., Protsenko S.V. Development the transport and transportation model of nitrogen, phosphorus and silicon compounds in shallow waters. Computational Mathematics and Information Technologies. 2018;2(2). https://doi.org/10.23947/2587-8999-2018-2-67-75

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)