Preview

Computational Mathematics and Information Technologies

Advanced search

Application of assimilation and filtration methods for satellite water sensing data for plankton population evolution processes predictive modeling

https://doi.org/10.23947/2587-8999-2020-1-1-1-11

Abstract

The article is devoted to the analysis and implementation of satellite observations data assimilation and filtration highly technological methods used in the hydrodynamics and biological kinetics of shallow reservoirs mathematical models development and verification. The paper considers the using neural networks possibility and describes various methods for filtering images obtained from satellite earth sensing data. The plankton populations evolution mathematical model in the Azov sea is considered. Its calibration and verification is carried out using observations satellite assimilation methods. The purpose of this work is to create a software tool used at the preliminary and final stages of hydrobiological processes in shallow water mathematical modeling.

About the Authors

A. L. Leontyev
Southern Federal University; Supercomputers and Neurocomputers Research Center; Scientific and Technological University «Sirius»
Russian Federation

Anton L. Leontyev, Postgraduate student of the Department of Intelligent and multiprocessor systems

Chekhov st., 2, Taganrog

(918)510 29 20



A. V. Nikitina
Southern Federal University; Supercomputers and Neurocomputers Research Center; Scientific and Technological University «Sirius»
Russian Federation

Alla V. Nikitina, Dr.Sci., professor, Professor of the Department of Intelligent and multiprocessor systems

Chekhov st., 2, Taganrog

8(951)516 85 38



M. I. Chumak
Scientific and Technological University «Sirius»; Don State Technical University
Russian Federation

Margaret I. Chumak, Master student of the Department of Mathematics and computer science

Gagarin sq., 1, Rostov-on-Don

8(908)182 03 69



References

1. Lotka A.J. Contribution to the energetics of evolution // Proc. Natl. Acad. Sci. 1922. No. 8. P. 147-150.

2. Volterra V. Variations and fluctuations of the number of individuals in animal species living together // Rapp. P. – V. Reun. Cons. Int. Explor. Mer. 1928. Vol. 3. P. 3-51.

3. Logofet D.O., Lesnaya E.V. The mathematics of Markov models: what Markov chains can really predict in forest successions // Ecological Modelling. 2000. Vol. 126. P. 285-298.

4. Monod J. Recherches sur la croissance des cultures bacteriennes. Paris: Hermann. 1942. 210 p.

5. Mitscherlich E.A. Das Gesert des Minimums und das Gesetz des abnehmenden Bodenertrags // Landw. Jahrb. 1909. 595 p.

6. Odum H.T. System Ecology. New York: Wiley, 1983. 644 p.

7. Gause G.F. Experimental studies on the struggle for existence: 1. Mixed population of two species of yeast // Journal of Experimental Biology. 1932. V. 9. P. 389-402.

8. Vinberg G.G. Some results of practical application of production-hydrobiological methods // Production of populations and communities of aquatic organisms and methods of its study. Sverdlovsk: Ural center of the USSR Academy of Sciences, 1985, P. 13-18.

9. Abakumov A.I. Signs of stability of water ecosystems in mathematical models // Proceedings Of the Institute of system analysis of the Russian Academy of Sciences. System analysis of the problem of sustainable development, Moscow: ISA RAS, 2010, Vol. 54, P. 49-60.

10. Menshutkin V.V., Rukhovets L.A., Filatov N.N. Modeling of freshwater lake ecosystems (review). 2. Models of freshwater lake ecosystems. resources. 2013. Vol. 41. No. 1. P. 24-38.

11. Astrakhantsev G.P., Egorova N.B., Rukhovets L.A. Mathematical modeling of impurity distribution in reservoirs // Meteorology and hydrology. 1988. no. 6. Pp. 71-79.

12. Vorovich I.I., Gorelov A.S., Gorstko A.B., Dombrovsky Yu.A., Zhdanov Yu.A., Surkov F.A., Epstein L.V. Rational use of water resources of the Azov sea basin: mathematical models / Ed. by I.I. Vorovich. Moscow: Nauka, 1981. 360 p.

13. Marchuk G.I., Sarkisyan A.S. Mathematical modeling of ocean circulation. Moscow: Nauka, 1988. 304 p.

14. Jorgensen S.E., Mejer H., Firiis M. Examination of a lake model // Ecological Modelling. 1978. Vol. 4. P. 253-278.

15. Steele J.H. The structure of marine ecosystems. – Cambrige (Massachusets): Harv. Univ. Press, 1974. – 110 p.

16. Dubois D.M. A model of patchines for prey-predator plankton populations // Ecol. Modeling. 1975. № 1. P. 67-80.

17. Sukhinov A.I., Nikitina A.V., Chistyakov A.E. Using multichannel satellite images for predictive modelling the "bloom" phytoplankton processes in shallow waters on supercomputer // Computational Mathematics and Information Technologies. 2017. V. 1. No. 2. P. 1-13.

18. Nikitina A.V., Semenyakina A.A. Mathematical modeling of eutrophication processes in Azov Sea on supercomputers // Computational Mathematics and Information Technologies. 2017. V. 1. No 1. P. 82-101.

19. Sukhinov A.I., Sidoryakina V.V., Nikitinа A.V., Chistyakov A.E., Filina A.A., Litvinov V.N. Mathematical modeling of nonlinear effects in dynamic of interacting plankton and fish populations of Azov Sea // Computational Mathematics and Information Technologies. 2019. V. 2. No 2. P. 83-103.

20. Nikitina A.V., Kozlov V.M., Filina A.A. Mathematical modeling of the delay process in regulation of population dynamics based on the theory of cellular automation // Computational Mathematics and Information Technologies. 2019. V. 1. No 1. P. 35-49.

21. Nikitina A.V., Kamyshnikova T.V. Mathematical modeling of pollution propagation processes and phytoplankton evolution in relation to the Taganrog Bay area. 2001. - 48 p.

22. Suykens F., Willems Y. Adaptive filtering for progressive Monte Carlo image rendering // WSCG, February, 2000.

23. Gastal E., Oliveira Adaptive manifolds for real-time high-dimensional filtering // ACM Transactions on Graphics (TOG), 31(4), 33, 2012.

24. Dammertz H., Sewtz D., Hanika J., Lensch H. Edge-Avoiding À-Trous Wavelet Transform for fast Global Illumination Filterin // High Performance Graphics, 2010.

25. Hachicuka T., Wojciech J., Weistroffer R., Dale K., Humphreys G., Zwicker M., Jensen H. Multidimensional Adaptive Sampling and Reconstruction for Ray Tracing // ACM Transactions on Graphics, Vol. 27, No. 3, Article 33, August, 2008.

26. Bauszat P., Eisemann M., Magnor M. Guided Image Filtering for Interactive High‐quality Global Illumination // Computer Graphics Forum, Vol. 30, No. 4. – Р. 1361 - 1368.

27. Doidge I., Jones. Probabilistic illumination-aware filtering for Monte Carlo rendering // The Visual Computer, 29(6 - 8). – Р. 707 - 716, 2013. Blackwell Publishing Ltd, June, 2011.

28. Chen Y., Lin Z., Zhao X., Wang G., Gu Y. Deep learning-based classification of hyperspectral data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 7, n. 6, pp. 2094–2107, 2014.

29. Zhen Z., Wang. G. Learning discriminative hierarchical features for. object recognition, IEEE Signal Process. Lett., vol. 21, no. 9, pp. 1159–1163, 2014.


Review

For citations:


Leontyev A.L., Nikitina A.V., Chumak M.I. Application of assimilation and filtration methods for satellite water sensing data for plankton population evolution processes predictive modeling. Computational Mathematics and Information Technologies. 2020;4(1):1-11. https://doi.org/10.23947/2587-8999-2020-1-1-1-11

Views: 231


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)