Solving the eigenvalues and eigenfunctions problems for the Helmholtz equation by the point-sources method
Abstract
The paper provides the developed approach to solve the eigenvalues and eigenfunctions problems
for the Helmholtz equation in domains with an arbitrary configuration. In developing the approach
for numerical solution of problems, the point-sources method (PSM) was used. The proposed
method is based on the analysis of the condition number of the PSM system or the error of the numerical
solution of problems. The concept of "eigenvalues criteria" is introduced. The research result is a
developed effective method - an algorithm for solving problems of eigenvalues and eigenfunctions
for the Helmholtz equation. It is shown that at the approach of the Helmholtz parameter to the problem
eigenvalue, the condition number of the PSM system and the error of the numerical solution rise
sharply. Therefore, we calculate the dependence of the condition number of the PSM system or error
of the problem numerical solution on the Helmholtz parameter. Then, according to position of the
maximum of the received dependences we find the eigenvalues of the Helmholtz equation in a given
domain.. After finding the eigenvalues, it is possible to proceed to the determination of the eigenfunctions.
At that, if the eigenvalue appears degenerate, that is some eigenfunctions correspond to it, then
it is possible to find all the eigenfunctions taking into account the symmetry of the solution domain.
The two-dimensional and three-dimensional test problems are solved. Upon the results obtained, the
conclusion about the efficiency of the proposed method is made.
Keywords
About the Author
Elena E. ShcherbakovaRussian Federation
Shcherbakova, Elena E., associate professor of the Material Physics and Applied Hylology De-partment, Don State Technical University (RF,344000, Rostov-on-Don, Gagarin sq., 1), Cand. Sci. (Eng.), associate professor
References
1. Fairweather G. The method of fundamental solutions for elliptic boundary value problems / G. Fairweather, A. Karageorghis // Ad. Vol. Comput. Math. – 1998. – Vol. 9. – P. 69-95.
2. Alves C.J.S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems / C.J.S. Alves, C.S. Chen // Advances in Computational Mathematics. – 2005. – Vol. 23 – P. 125-142.
3. Knyazev, S.Y. Ustoychivoct’ i skhodimost’ metoda tochechnykh istochnikov polya pri chislennom reshenii kraevykh zadach dlya uravneniya Laplasa. [Stability and convergence of the point sources method in the numerical solution of boundary value problems for the Laplace equa-tion.] Izv. vuzov. Electromechanics, 2010, no. 1, pp. 3-12 (in Russian).
4. Knyazev, S.Y., Shcherbakova, E.E., Engibaryan, A.A. Chislennoe reshenie kraevykh zadach dlya uravneniya Puassona metodom tochechnykh istochnikov polya. [Numerical solution of boundary value problems for the Poisson equation by the point sources method.] Vestnik of Don State Technical University, 2014, vol. 14, no. 2(77), pp. 15-20 (in Russian).
5. Knyazev, S.Y., Shcherbakova, E.E. Reshenie trekhmernykh kraevykh zadach dlya uravneniy Laplasa s pomoshchyu metoda diskretnykh istochnikov polya. [The decision of the three-dimensional boundary value problems for the Laplace equation using the method of discrete sources of the field.] Izvestiya vysshikh uchebnykh zavedeniy. Electromechanics, 2015, no. 5, pp. 25-30 (in Russian).
6. Bahvalov, Y.A., Knyazev S.Y., Shcherbakov, A.A., Shcherbakova, E.E. Pogreshnost’ metoda tochechnykh istochnikov pri modelirovanii potentsial’nykh poley v oblastyakh s razlichnoy konfiguratsiey. [Accuracy of the point sources method in the modeling of potential fields in areas with different configurations.] Izvestiya vysshikh uchebnykh zavedeniy. Electromechanics, 2012, no. 5, pp. 17-21 (in Russian).
7. Knyazev, S.Y., Shcherbakova, E.E., Zaichenko, A.N. Sravnitel’ny analiz dvykh variantov metoda kollokatsiy pri chislennom modelirovanii potentsial’nykh poley. [Comparative analysis of two variants of the collocation method for numerical modeling of potential fields.] Izvestiya vysshikh uchebnykh zavedeniy. Electromechanics, 2014, no. 1, pp. 17-19 (in Russian).
8. Knyazev, S.Y., Shcherbakova, E.E. Reshenie zadach teplo- i massoperenosa s pomoshch’yu metoda tochechnykh istochnikov polya. [The solution of problems of heat and mass transfer by the point sources method. Proceedings of the higher educational institutions.] North-Caucasian region. Series: Engineering, 2006, no. 4, pp. 43-47 (in Russian).
9. Knyazev, S.Y., Pustovoyt, V.N., Shcherbakova, E.E. Modelirovanie poley uprugikh de-formatsiy s primeneniem metoda tochechnykh istochnikov. [Modeling of elastic strain fields using the point sources method.] Vestnik of Don State Technical University, 2015, vol. 15, no. 1 (80), pp. 29- 38 (in Russian).
10. Knyazev, S.Y., Pustovoyt, V.N., Shcherbakova, E.E. Modelirovanie trekhmernykh poley uprugikh deformatsiy s pomoshch’yu metoda tochechnykh istochnikov. [Simulation of three-dimensional fields of elastic deformation by the point sources method.] Vestnik of Don State Tech-nical University, 2015, vol. 15, no. 4 (83), pp. 13- 23 (in Russian).
11. Knyazev, S.Y., Shcherbakova, E.E., Shcherbakov, A.A. Sravnitel’ny analiz razlichnykh variantov ispol’zovaniya metoda tochechnykh istochnikov polya pri modelirovanii temperaturnykh poley. [A comparative analysis for different variants of the point sources method in the temperature fields simulation.] Fiziko-matematicheskoe modelirovanie system: Materialy XII mezhdunar. seminara. [Physical and mathematical modeling of systems: Proceedings of XII Intern. workshop.] Vo-ronezh, Voronezh. state. tehn. university, 2014, pp. 52-56 (in Russian).
12. Lunin, L.S., Knyazev, S.Y., Seredin, B.M., Poluhin, A.S., Shcherbakova, E.E. Issledovanie stabil’nosti termomigratsii ansamblya lineynykh zon s pomoshch’yu trekhmernoy komp’yuternoy modeli, postroennoy na osnove metoda tochechnykh istochnikov polya. [Stability study of linear thermal migration zones ensemble using three-dimensional computer model, built on the basis of the point sources method. Vestnik Yuzhnogo nauchnogo tsentra, 2015, vol. 11, no. 4, pp. 9-15 (in Russian).
13. Knyazev, S.Y., Shcherbakova, E.E., Shcherbakov, A.A. Matematicheskoe modelirovanie poley uprugikh deformatsiy metodom tochechnykh istochnikov polya. [Mathematical modeling of elastic deformation fields by the point sources method. Mathematical methods in engineering and technology.] MMTT, 2015, no. 5 (75), pp. 21-23 (in Russian).
14. Knyazev, S.Y., Shcherbakova, E.E., Shcherbakov, A.A. Komp’yuternoe modelirovanie potentsial’nykh poley metodom tochechnykh istochnikov: monografiya. [Computer modeling of potential fields by the point sources method: a monograph.] Rostov-on-Don, Publishing Center DSTU, 2012, 156 p (in Russian).
15. Knyazev, S.Y. Metod tochechnykh istochnikov dlya komp’yuternogo modelirovaniya fizichrskikh poley v zadachakh s podvizhnymi granitsami: diss. …. doktora tekhn. nauk. [The point sources method for computer modeling of physical fields in problems with moving boundaries: dis-sertation ... doctor of technical sciences.] Novocherkassk, 2011, 342 p (in Russian).
16. Knyazev, S.Y., Shcherbakova, E.E. Chislennoe issledovanie stabil’nosti termomigratsii ploskikh zon. [Numerical study of thermal stability of the flat-band migration.] Izvestiya vysshikh uchebnykh zavedeniy. Electromechanics, 2007, no. 1, pp. 14-19 (in Russian).
17. Bahvalov, Y.A., Knyazev, S.Y., Shcherbakov, A.A. Matematicheskoe modelirovanie fizicheskikh poley metodom tochechnykh istochnikov. [Mathematical modeling of physical fields by the point sources method.] Izvestiya Rossiyskoy akademii nauk. Seriya fizicheskaya, 2008, vol. 72, no. 9, pp. 1259-1261 (in Russian).
18. Knyazev, S.Y. Chislennoe reshenie uravneniy Puassona i Gelmgoltsa s pomoshch’yu metoda tochechnykh istochnikov. [Numerical solution of Poisson and Helmholtz equations using the point sources method.] Izvestiya vuzov, Electromechanics, 2007, no. 2, pp. 77-78 (in Russian).
19. Knyazev, S.Y., Shcherbakova, E.E., Zaichenko, A.N. Chislennoe reshenie kraevykh zadach dlya neodnorodnykh uravneniy Gelmgoltsa metodom tochechnykh istochnikov polya. [Numerical solution for inhomogeneous Helmholtz equation by the point sources method.] Izvestiya vysshikh uchebnykh zavedeniy. Electromechanics, 2014, no. 4, pp. 14-19 (in Russian).
20. Knyazev, S.Y. Integral'noe uravnenie dlya chislennogo resheniya statsionarnykh kvantovo-mekhanicheskikh zadach. [Integral equation for the numerical solution of a stationary quantum mechanical tasks] Vestnik of Don State Technical University, 2016, vol. 16, no. 3 (86), pp. 79-86 (in Russian).
21. Knyazev S.Yu., Shcherbakova E.E. Method for numerical solution of the stationary Schrödinger equation. Russian Physics Journal, 2017, vol. 59, no 10, pp. 1616-1622.
22. Abramovitz, A., Stigan I. Spravochnik po spetsial’nym funktsiyam. [Special Function Manual.] Moscow, Science, 1979, 832 p. (in Russian)
23. Polyanin, A.D. Spravochnik po lineynym uravneniyam matematicheskoy fiziki. [Handbook of linear equations of mathematical physics.] Moscow, FIZMATLIT, 2001, 576 p. (in Russian).
Review
For citations:
Shcherbakova E.E. Solving the eigenvalues and eigenfunctions problems for the Helmholtz equation by the point-sources method. Computational Mathematics and Information Technologies. 2017;1(1).