Preview

Computational Mathematics and Information Technologies

Расширенный поиск

Моделирование влияния политической поляризации на исход пропагандистского противоборства

Аннотация

Комплекс вопросов, связанных с пропагандистским противоборством и, более широко, с влиянием целенаправленно распространяемой информации на общество, привлекает неослабевающее внимание исследователей различных специальностей – социологов, специалистов в области информационных технологий и математиков. Модель выбора позиций индивидами при пропагандистском противоборстве применяется к изучению вопроса о влиянии степени поляризации общества на исход противостояния. Для этого рассмотрен случай распределения индивидов, соответствующего обществу, состоящему из двух групп, придерживающихся противоположных установок по некоторому вопросу. В настоящей работе развивается подход, акцентированный на модели информационного противоборства – именно, на выборе позиций индивидами при противоборстве. В основе этой модели лежит нейрологическая схема Рашевского.
Данная модель прилагается к изучению вопроса о том, как уровень политической поляризации влияет на исход пропагандистской борьбы. Данная постановка вопроса становится возрастающее актуальной, в первую очередь, в связи с развитием социальных медиа. В последнее время в литературе широко обсуждается вопрос об усилении поляризации в связи с развитием социальных медиа и вообще Интернета, а также о влиянии поляризации на политические события. В настоящей работе поляризованное общество описывается с помощью кривой распределения, имеющей два высоких горизонтальных плато. Расстояние между центрами тяжести этих плато принимается за меру поляризации. Таким образом, процесс возрастания поляризации имеет вид взаимного удаления плато друг от друга. Модель исследована аналитически и численно. Показано, что умеренная политическая поляризация благоприятствует стороне, имеющей превосходство в интенсивности пропаганды. Однако, если поляризация слишком сильна, то она нивелирует преимущество в пропаганде.

Об авторах

Александр Петрович Михайлов
Институт прикладной математики им. М.В.Келдыша РАН (РФ, г. Москва, Миусская пл.,4)
Россия

Михайлов Александр Петрович, доктор физико-математических наук, профессор заведующий сектором Института прикладной математики им. М.В.Келдыша РАН (РФ, г. Москва, Миусская пл.,4)



Александр Пхоун Чжо Петров
Институт прикладной математики им. М.В.Келдыша РАН (РФ, г. Москва, Миусская пл.,4)
Россия

Петров Александр Пхоун Чжо, доктор физико-математических наук, ведущий научный сотрудник Института прикладной математики им. М.В.Келдыша РАН (РФ, г. Москва, Миусская пл.,4)



Ольга Геннадьевна Прончева
Институт прикладной математики им. М.В.Келдыша РАН (РФ, г. Москва, Миусская пл.,4)
Россия

Прончева Ольга Геннадьевна, аспирант Института прикладной математики им. М.В.Келдыша РАН (РФ, г. Москва, Миусская пл.,4)



Список литературы

1. Chomsky N. Media control: The spectacular achievements of propaganda. Seven Stories Press, 2002.

2. Cull, N. J., Culbert, D. H., and Welch, D. Propaganda and mass persuasion: A historical encyclopedia, 1500 to the present. ABC-CLIO, 2003.

3. Daley, D.J., Kendall, D.G. Stochastic rumors. Journal of the Institute of Mathematics and its Applications, 1964, vol. 1, p. 42-55.

4. Maki, D.P., Thompson, M. Mathematical models and applications. Prentice Hall, Englewood Cliffs, 1973.

5. Chen, Guanghua, Shen H., Ye T., Chen G., and Kerr N. A kinetic model for the spread of rumor in emergencies. Discrete dynamics in nature and society, vol. 2013.

6. Isea, R., Mayo-García, R. Mathematical analysis of the spreading of a rumor among different subgroups of spreaders. Pure and Applied Mathematics Letters, 2015, vol. 2015, p. 50-54.

7. Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M. Theory of rumor spreading in complex social networks. Physica A, 2007, 374, pp. 457–470.

8. Gubanov, D.A., Novikov, D.A., Chkhartishvili, A.G. Sotsial’nye seti: modeli informatsionnogo vliyaniya, upravleniya i protivoborstva. [Social networks: models of informational influence, control and confrontation.] Moscow, Fizmatlit, 2010, 228 p. (in Russian).

9. Shvedovskiy, V.A. Modelirovanie rasprostraneniya informatsii v smezhnykh sotsial’nykh gruppakh. [Modeling of information dissemination in adjacent social groups.] Mathematical methods in sociological research, Moscow, Nauka. 1981, pp. 207-214 (in Russian).

10. Osei, G.K., Thompson, J.W. The supersession of one rumour by another. Journal of Applied Probability, 1977, vol. 14, no. 01, pp. 127-134.

11. Kaligotla, C., Yücesan, E., Chick, S. E. An agent based model of spread of competing rumors through online interactions on social media. Proceedings of the 2015 Winter Simulation Conference, IEEE Press, 2015, pp. 3985-3996.

12. Samarskii, A.A., Mikhailov, A.P. Principles of mathematical modelling: Ideas, Methods, Examples. 2001, CRC Press.

13. Mikhailov, A. P., Klyusov, N.V. O svoystvakh prosteyshey matematicheskoy modeli rasprostraneniya informatsionnoy ugrozy. [On the properties of a simple mathematical model of propagation of information threat.] Moscow, MAKS Press, Matematicheskoe modelirovanie sotsiyal’nykh protsessov, vol. 4, 2002, pp. 115-123 (in Russian).

14. Mikhailov, A.P., Izmodenova, K.V. Ob optimal’nom upravlenii protsessom rasprostraneniya informatsii. [On the optimal control of the process of information dissemination.] Matematicheskoe modelirovanie, 2005, vol. 17, no. 5, pp. 67-76 (in Russian).

15. Mikhailov, A.P., Izmodenova, K.V. Ob optimal’nom upravlenii v matematicheskoy modeli rasprostraneniya informatsii. [On the optimal control in a mathematical model of information distribution.] Matematicheskoe modelirovanie sotsiyal’nykh protsessov, iss. 6, Moscow, MAKS Press, 2004 (in Russian).

16. Mikhailov, A.P., Petrov, A.P., Marevtseva, N.A., Tretiakova, I.V. Development of a model of information dissemination in society. Mathematical models and computer simulations, 2014, vol. 6, no. 5, p. 535-541.

17. Marevtseva, N.A. Prosteyshie matematicheskie modeli informatsionnogo protivoborstva. [The simplest mathematical models of information warfare.] Sbornik trudov Vserossiyskikh nauchnykh molodezhnykh shkol. Seriya “Matematicheskoe modelirovanie i sovremennye informatsionnye tekhnologii”. [Proceedings of all-Russian scientific youth schools. Series “Mathematical modelling and modern information technologies”, vol. 8.] Rostov-on-Don, izdatel’stvo Yuzhnogo federal’nogo universiteta, 2009, pp. 354-363 (in Russian).

18. Mikhailov, A.P., Marevtseva, N.A. Models of information warfare. Mathematical models and computer simulations, 2011, vol. 4, no. 3, pp. 251-259. doi: 10.1134/S2070048212030076

19. Mikhailov, A.P., Petrov, A.P., Proncheva, O.G., Marevtseva N.A. Mathematical modeling of information warfare in a society. Mediterranean Journal of Social Sciences, vol. 6, no. 5, S2, pp. 27-3, doi: 10.5901/mjss.2015.v6n5s2p27

20. Mikhailov, A.P., Petrov, A.P., Proncheva, O.G., Marevtseva, N.A. Matematicheskoe modelirovanie informatsionnogo protivoborstva v sotsiume. [Mathematical modeling of information warfare in a society.] Mezhdunarodny ekonomicheskiy simpozium – 2015. Materialy Mezhdunarodnykh nauchnykh konferentsiy, posvyashchennykh 75-letiyu ekonomicheskogo fakul’teta Sankt-Peterburgskogo gosudarstvennogo universiteta: sbornik statey. Otv. red. S.A. Belozerov. [International economic symposium – 2015. Materials of International scientific conferences, dedicated to the 75th anniversary of the economic faculty of St. Petersburg state university: collection of articles. edited by S. A. Belozerov.] Scifiya-print, 2015, pp. 293-303, available at: http://econ-conf.spbu.ru/files/Symposium_Sbornik_Statey.pdf (in Russian).

21. Yanagizawa-Drott, D. Propaganda and conflict: evidence from the Rwandan genocide. The Quarterly Journal of Economics, 2014, 129(4), 1947–1994, doi: 10.1093/qje/qju020.

22. Bass, F.M. A new product growth for model consumer durables. Management Science, 1969, vol.15, pp. 215–227.

23. Delitsyn, L.L. Kollichestvennye modeli rasprostraneniya novovvedeniy v sfere informatsionnykhn i telekomunikatsionnykh tekhnologiy. [Quantitative model of propagation of innovations in the field of information and telecommunication technologies.] Moscow, MGYUKI, 2009, p. 106 (in Russian).

24. Mikhailov, A.P., Petrov, A.P., Kalinichenko, M.I., Polyakov, S.V. Modeling the simultaneous distribution of legal and counterfeit copies of innovative products. Mathematical models and computer simulations, 2014, vol. 6, no. 1, pp. 25-31, doi: 10.1134/S2070048214010116.

25. Petrov, A.P., Maslov, I.A., Tsaplin, N.A. [Modeling position selection by individuals during information warfare in society.] Mathematical models and computer simulations, 2016, vol. 8, no. 4, pp. 401-408, doi 10.1134/S2070048216040141.

26. Rashevsky, N. Outline of a physico-mathematical theory of excitation and inhibition, Protoplasma, 1933.

27. Rashevsky, N. Mathematical biophysics: physico-mathematical foundations of biology. Univ. of Chicago, Chicago Press, 1938.

28. Flaxman, S., Goel, S., Rao, J.M. Ideological segregation and the effects of social media on news consumption. Available at SSRN, 2013.

29. Lelkes, Y., Sood, G., Iyengar, S. The hostile audience: The effect of access to broadband internet on partisan affect. American Journal of Political Science, 2015.

30. Bernhardt, D., Krasa, S., Polborn, M. Political polarization and the electoral effects of media bias. Journal of Public Economics, 2008, vol. 92, no. 5, pp. 1092-1104.

31. DiMaggio, P., Evans, J., Bryson, B. Have American's social attitudes become more polarized? American journal of Sociology, 1996, vol. 102, no. 3, pp. 690-755.

32. Fiorina, M.P., Abrams, S.J. Political polarization in the American public. Annu. Rev. Polit. Sci., 2008, vol. 11, pp. 563-588.

33. Butuzov, V.F., Vasileva, A.B. Ob asimptotike resheniya tipa kontrastnoy struktury. [On the asymptotics of the solutions of contrasting structure.] Matematicheskie zametki, 1987, vol. 42, no. 6, pp. 831-841

34. Vasil'eva, A.B., Butuzov, V.F., Kalachev, L.V. The boundary function method for singular perturbation problems. Society for Industrial and Applied Mathematics, 1995.

35. Vasil’eva, A., Nikitin, A., Petrov, A. Stability of contrasting solutions of nonlinear hydromagnetic dynamo equations and magnetic fields reversals in galaxies. Geophysical and Astrophysical Fluid Dynamics, 1994, vol.78, pp.261-279.


Рецензия

Для цитирования:


Михайлов А.П., Петров А.П., Прончева О.Г. Моделирование влияния политической поляризации на исход пропагандистского противоборства. Computational Mathematics and Information Technologies. 2017;1(1).

For citation:


Mikhailov A.P., Petrov A.P., Proncheva O.G. Modeling the Effect of Political Polarization on the Outcome of Propaganda Battle. Computational Mathematics and Information Technologies. 2017;1(1).

Просмотров: 119


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)