Preview

Computational Mathematics and Information Technologies

Advanced search

Study of the optimal solution sensitivity of variational data assimilation problem for a model of sea thermodynamics

https://doi.org/10.23947/2587-8999-2017-2-156-163

Abstract

Algorithms are proposed to study the sensitivity of the optimal solution to the errors of the observational data in the problem of variational assimilation of the sea surface temperature data with the aim of restoring heat fluxes for the nonstationary system of thermodynamic equations. Numerical experiments are presented in an application to the model of the thermodynamics of the Baltic Sea.

About the Authors

Victor Petrovich Shutyaev
Institute of Numerical Mathematics of the Russian Academy of Sciences (8 Gubkin St., Moscow, Russian Federation)
Russian Federation

Shutyaev Victor Petrovich, Doctor of Science in Physics and Maths, Professor, Scientific Secretary and Leading Researcher of the Institute of Numerical Mathematics of the Russian Academy of Sciences (8 Gubkin St., Moscow, Russian Federation)



Evgeny Ivanovich Parmuzin
Institute of Numerical Mathematics of the Russian Academy of Sciences (8 Gubkin St., Moscow, Russian Federation)
Russian Federation

Parmuzin Evgeny Ivanovich, Candidate of Science in Physics and Maths, Senior Researcher of the Institute of Numerical Mathematics of the Russian Academy of Sciences (8 Gubkin St., Moscow, Russian Federation)



References

1. Marchuk G.I. Adjoint Equations and Analysis of Complex Systems. ‒ Dordrecht: Kluwer, 1995. ‒ 466 p.

2. Marchuk G. I., Penenko V.V. Application of optimization methods to the problem of mathematical modeling of the atmospheric processes and environment // In: Modeling and Optimization of Complex Systems: Proc. of the IFIP-TC7 Working conf. ‒ New York: Springer, 1978, pp. 240-252.

3. Le Dimet F.X., Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects // Tellus. ‒ 1986. ‒ V.38A. ‒ pp. 97-110.

4. Shutyaev V.P. Operators of control and iterative algorithms in problems of variational data assimilation. ‒ Moscow: Nauka, 2001. ‒ 239 p.

5. Agoshkov V.I., Parmuzin E.I., Shutyaev V.P. Numerical algorithm for variational assimilation of observational data on the temperature of the ocean surface // ZhVM and MF. ‒ 2008. ‒ T.48, №8. ‒ pp.1371-1391.

6. Le Dimet F.-X., Shutyaev V. On deterministic error analysis in variational data assimilation // Nonlinear Processes in Geophysics. ‒ 2005. ‒ V.12. ‒ pp.481-490.

7. Gejadze I., Le Dimet F.-X., Shutyaev V.P. On analysis error covariances in variational data assimilation // SIAM J. Sci. Comput. ‒ 2008. ‒ V.30, no.4. ‒ pp.1847-1874.

8. Gejadze I., Le Dimet F.-X., Shutyaev V.P. On optimal solution error covariances in variational data assimilation problems // J. Comp. Phys. ‒ 2010. ‒ V.229. ‒ pp.2159-2178.

9. Gejadze I., Shutyaev V.P., Le Dimet F.-X. Analysis error covariance versus posterior covariance in variational data assimilation // Quartely Journal of the Royal Meterological Society. ‒ 2013. ‒ V.139. ‒ pp.1826-1841.

10. Alekseev V.V., Zalesny V.B. Numerical model of large-scale ocean dynamics // Computational processes and systems. ‒ Moscow: Nauka, 1993, pp. 232-253.

11. Marchuk G.I., Dymnikov V.P., Zalesny V.B. Mathematical models in geophysical hydrodynamics and numerical methods for their implementation. ‒ L .: Gidrometeoizdat, 1987. ‒ 352 p.

12. Parmuzin E.I., Shutyaev V.P. The study of solution sensitivity for the variational observation data assimilation problem in the Black Sea dynamics model. J. Numer. Anal. Math. Modeling. ‒ 2013. ‒ V.28, no.1. ‒ pp. 37-52.

13. Zalesny V.B., Gusev A.V., Chernobay S.Yu., Aps R., Tamsalu R., Kujala P., Rytkönen J. The Baltic Sea circulation modeling and assessment of marine pollution // Russ. J. Numer. Anal. Math. Modeling. ‒ 2014. ‒ V.29, no.2. ‒ pp. 129-138.


Review

For citations:


Shutyaev V.P., Parmuzin E.I. Study of the optimal solution sensitivity of variational data assimilation problem for a model of sea thermodynamics. Computational Mathematics and Information Technologies. 2017;1(2). https://doi.org/10.23947/2587-8999-2017-2-156-163

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)