Preview

Computational Mathematics and Information Technologies

Advanced search

Basic system of modelling (BSM): the concept, architecture and methodology

https://doi.org/10.23947/2587-8999-2017-2-194-200

Abstract

The paper covers the architecture and main functional components of the basic system of modelling (BSM), as the integrated high-performance computational environment to solve interdisciplinary direct and inverse problems on the multi- processor computational system (MPS) with distributed and shared hierarchical memory. BSM subsystems support the stages of geometric and functional modelling, grid generation, high order approximations, fast algebraic solutions, etc. The scalable parallelism is provided by means of hybrid programming models: MPI, OpenMP, computational libraries for graphic accelerators and vectorization. The BSM main principles are discussed to have wide applications and long life cycle.

About the Authors

Valery Pavlovich Il’in
Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the RAS, Novosibirsk, Russian Federation (6 Prospekt Academician Lavrentyev, Novosibirsk, Russian Federation)
Russian Federation

Il’in Valery Pavlovich, Doctor of Science in Physics and Maths, Professor, Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the RAS, Novosibirsk, Russian Federation (6 Prospekt Academician Lavrentyev, Novosibirsk, Russian Federation)



Viktor Sergeevich Gladkih
Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the RAS, Novosibirsk, Russian Federation (6 Prospekt Academician Lavrentyev, Novosibirsk, Russian Federation)
Russian Federation

Gladkih Viktor Sergeevich, engineer of the 1st category, Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the RAS, Novosibirsk, Russian Federation (6 Prospekt Academician Lavrentyev, Novosibirsk, Russian Federation)



References

1. ANSYS. URL: www.ansys.com (reference date: July 31, 2017)

2. FEniCS. URL: http://fenicsproject.org/ (reference date: July 31, 2017)

3. Netlib. URL: http://www.netlib.org/ (reference date: July 31, 2017)

4. Intel®. Mathematical Kernel Library. URL: http://software.intel.com/en-us/intel-mkl (reference date: July 31, 2017)

5. OpenFOAM. URL: http://www.openfoam.com (reference date: July 31, 2017)

6. DUNE. http: //www,dune-project.org (reference date: July 31, 2017)

7. MATLAB. URL: https://www.mathworks.com/products/matlab.html (reference date: July 31, 2017)

8. Il'in, V.P. On the performance and intelligence of supercomputer modeling. / Il'in V.P., Skopin I.N. // Programming. ‒ 2016. ‒ No. 1. ‒ pp. 10-25.

9. Il'in, V.P. Fundamental questions of mathematical modeling. / Il'in V.P. // Bulletin of the Russian Academy of Sciences. ‒ 2016. ‒ Vol. 86. ‒ No. 4. ‒ pp. 26-36.

10. Kravchenko, V.F. Algebra of logic, atomic functions and wavelets in physical applications / Kravchenko V.F., Rvachev V.L. // Moscow: Fizmatlit, 2006.

11. Delfour, M. Metrics, Analysis, Differential Calculus, and Optimization. / Delfour M., Zolesio J. Shapes and Geometries. // Philadelphia: SIAM ‒ 2011.

12. Ushakov, D.M. Introduction to the mathematical foundations of CAD. / Ushakov D.M. // Novosibirsk: Publishing house of CJSC LEDAS. - 2008.

13. The Herbarium. URL: http://tflex.ru/about/publications/detail/index.php?ID=3846 (reference date: July 31, 2017)

14. Golubeva, L.A. On software technologies in geometric aspects of mathematical modeling / Golubeva L.A., Ilyin V.P., Kozyrev A.N. // Bulletin of NSU. Series «Information Technologies». ‒ 2012. ‒ Vol. 10. ‒ pp. 25-33.

15. Schoberl J. Netgen-an advancing front 2D / 3D-mesh generator based on abstract rules / Schoberl J. // Computing and Visualization in Science. 1997. ‒ Vol. 1. ‒ pp. 41-52.

16. GMESH. URL: http://gmsh.info/ (reference date: July 31, 2017)

17. Il'in, V.P. DELAUNAY: technological environment of grid generation / Il'in V.P. // SIBLIM. ‒ 2013. ‒ Vol.16. ‒ pp. 83-97.

18. Il'in, V.P. Methods of finite differences and finite volumes for elliptic equations. / Il'in V.P. // Novosibirsk: Publishing house of the IVMMG SB RAS. ‒ 2001.

19. Il'in V.P. Methods and technologies of finite elements. / Il'in V.P. // Novosibirsk: Publishing house of the IVMMG SB RAS. ‒ 2007.

20. Butyugin, D.S. Chebyshev: principles of automating the construction of algorithms in an integrated environment for grid approximations of initial-boundary value problems. / Butyugin D.S., Il'in V.P. // Proceedings of the International Conference PCT-2014. Chelyabinsk: Publishing House of SUSU. ‒ 2014. ‒ pp. 42-50.

21. Butyugin, D.S. Functionality and technology of algebraic solvers in the Krylov library. / Butyugin DS, Guryeva Ya.L., Il'in V.P. and others // Herald of SUSU. Series «Computational Mathematics and Informatics». ‒ 2013. ‒ Vol. 2. ‒ pp. 92-105.

22. Il'in, V.P. On the problems of solving large SLAE. / Il'in V.P. // Zapiski Nauchnykh Seminarov POMI RAN ‒ 2015 ‒ pp. 112-127.

23. Il'in, V.P. On the numerical solution of direct and inverse problems of electromagnetic electrical prospecting / Il'in V.P. // Siberian Journal of Computational Mathematics ‒ 2003 ‒ Vol. 6 ‒ pp. 381-391

24. Il'in, V.P. About component technologies of high-performance mathematical modeling. / Ilyin V.P. // Proceedings of the Intern. Conf. PCT-2015. Ekaterinburg: Ufa, IMM UrB RAS ‒ 2015 ‒ pp. 166-171.


Review

For citations:


Il’in V.P., Gladkih V.S. Basic system of modelling (BSM): the concept, architecture and methodology. Computational Mathematics and Information Technologies. 2017;1(2). https://doi.org/10.23947/2587-8999-2017-2-194-200

Views: 109


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8999 (Online)